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1 Summary

The first task of an intercept receivers is to detect the presence of a target.
From the data collected at multiple platform receivers a decision has to be made
on the presence or absence of a target. A common practice is to define a function
of this observed data and compare the function value against a threshold to make
a decision. This function, or sometimes also called as the test statistic, is called the
detector. Although no explicit detector has been derived by Fowler1, the approach
taken for localization suggests that the detector would be the complex ambiguity
function (CAF). We will refer to this as the CAF detector or otherwise simply
as the time difference of arrival (TDOA) approach as it is commonly called. It is
important to note that the detector that we are proposing is also a TDOA based
detector. What we are proposing is a better technique for estimating the TDOA
information.

In a nutshell the CAF detector can be explained as follows. From all the possi-
ble receiver combinations only a small subset of pairs is chosen. For the data from
each of these pairs of receivers the CAF is computed. The CAF corresponding to
the pair that yields the maximum CAF is taken as the test statistic and compared
to a threshold. There are two drawbacks to this approach. The first is that it is
using only part of the data (only a subset of all possible combinations). So the
available information is not completely used which directly leads to a poor detec-
tion performance. Even if all the pairs are used there is a second drawback. The
detector is depending only on the correlation factor but for detection, the energy
at a particular receiver is also an important factor. This factor is not taken into
account in this detector. This was also evident in some of our simulations where a
plain energy detector outperformed the CAF detector.

Clearly, the currently used technique is not processing the available data ef-
ficiently. The GLRT detector that we propose processes the data more efficiently.
We have shown that the GLRT detector is the maximum eigen-value of a complex
ambiguity matrix. This matrix has the correlation factors from all possible com-
binations of receiver pairs. Also, the diagonal of this matrix is the energy at each
receiver. So, we are using the two important factors - energy and correlation, in
our detector and so the performance of this detector is better.

Once a target has been detected the next task of an interceptor is to localize
the target. Localization is the estimation of the target position and velocity. The
TDOA and frequency difference of arrival (FDOA) data can be expressed as a func-
tion of the target position and velocity. So, if the TDOA and FDOA information
can be estimated from the observed data then using these estimates the target po-
sition and velocity can be calculated. In the current technique the time-difference
and frequency-difference values that maximize the CAF are taken as the estimates

1Emitter Location Processing (A Short Course) Mark L. Fowler, Dept. of Electrical and
Computer Engineering, State University of New York, Binghamton, NY
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for the TDOA and FDOA respectively. So for each of the chosen pairs of receivers,
corresponding (TDOA, FDOA) pairs are estimated. There is a drawback to this
approach. For a given target location the (TDOA,FDOA) pairs corresponding to
each of the receiver pairs are all related and can take only a certain set of values.
But when they are estimated independently this restriction is not applied and so
the estimation is poorer. A better way to approach this is to express the CAF as a
function of the target location and velocity. In our MLE we avoid these drawbacks
by using all the available data and by directly estimating the target location and
velocity without the intermediate step of estimating the TDOA and FDOA values.

It is often possible to use the knowledge of obstacles between the emitter
and the sensors and the azimuth modulation they induce for the localization of
the emitter. This is particularly useful in urban environments where there is a
number of obstacles such as buildings, trees etc. These obstacles cause obstruction,
reflection, diffraction etc, of the transmitted signal which induces some azimuth
modulation in the signal received at the sensors. This kind of localization is called
as the knowledge aided design. We have derived the theoretical results that confirm
the increase in information due to these obstacles under certain scenarios. We have
also analyzed the case of an obstructing obstacle.

As explained previously the TDOA approach is sub-optimal for localization.
But, the advantage of the TDOA approach is that it requires very few resources.
For example since only a subset of the pairs of sensors is used, data links are
necessary only between those pairs. Also, the TDOAs are estimated at the local
sensor pairs and this information is transmitted to the central fusion station. This
requires far less bandwidth than what is required to transmit the complete signal.
In situations where the resources are limited, it may not be possible to implement
the MLE. Under such circumstances, the TDOA approach is the only option.
We have come up with an improvement to the existing TDOA approach without
requiring any additional resources. In order to estimate the TDOA at a local pair of
sensors, the cross-correlation function, which is the maximum likelihood function,
is maximized. We propose that the curvature of the cross-correlation function at
the peak should also be estimated and then transmitted to the central fusion station
along with the local TDOA estimate. The curvature of the likelihood function
gives a measure of the quality of the TDOA estimate. Therefore, this curvature
information can be used as a weighting factor when processing the TDOAs at the
fusion station. This only requires one additional number to be transmitted to
the fusion station. We have found that the curvature information is particularly
useful when some of the sensors are operating at signal-to-noise ratios close to the
break-down range.

In the following sections we will explain each of the above mentioned topics
in detail. All the mathematical derivations are provided in the appendices.

2
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2 Detection

2.1 Introduction

RADAR is an acronym for radio detection and ranging with detection being
the crucial function. A radar system illuminates a target of interest by transmit-
ting a signal. The echoes that are reflected back are fed to a detector which makes
a decision on the presence or absence of a target. These radars are called active
radars. There is another class of radars called passive radars or interceptors which
silently listen for transmissions from other active devices such as active radars,
jammers, beacons, etc. Intercept receivers are most desirable in hostile situations
due to their covert nature [1]. In addition there is only a one-way power loss at
the intercept receiver as compared to the two-way loss at the transmitting active
radar. On the other hand, since the angle of signal arrival and the signal itself
are generally unknown to the interceptor, efficient processing techniques such as
matched filtering cannot be implemented. Also, many modern active radar systems
are designed with low probability of intercept (LPI) features. They incorporate
physical attributes such as frequency variability, infrequent scanning, etc. to re-
duce the probability of interception by an interceptor and signal design attributes
such as low power, wide bandwidth, etc. to decrease the probability of detection
and parameter identification at the interceptor [2]. This leads to the need for
implementing highly efficient detectors in the interceptor systems.

A simple radar system with a single transmitter and a single receiver both at
the same physical location is called a monostatic radar. In general, its performance
is inferior to a multistatic radar system. An active multistatic radar system has one
or more transmitters and many spatially separated receiving stations. A passive
multistatic radar consists of only a network of distributed sensors. Such a system
of multiple receive platforms has a higher probability of intercepting the signals of
interest. Also, multiple platforms provide more data samples over a given interval
of time which increases the probability of detection. Each of these receive plat-
forms can perform some kind of processing on the received signal. This is called
decentralized target detection [3, 4]. These processed signals from the individual
receive platforms are communicated to a central processor where they are further
processed to arrive at a global decision. Quite often the local receive platforms
process the received signal to arrive at a local decision. These local decisions are
communicated to a central processor for decision fusion. Several such decision
fusion techniques have been proposed and used over the years [5, 6, 7]. Despite
some practical advantages such as requiring low bandwidth data links between
receive platforms and less processing power, the decentralized detection approach
has an obvious performance loss due to the absence of cross-platform correlation
information. On the other hand, centralized detection has better performance
but requires more resources. Large bandwidth data links are required to trans-
fer the received signals from all the receiving stations to the fusion center. High

3
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speed signal processors are required to process the large amount of data available
at the fusion center for real-time detection. Since centralized detection relies on
the cross-platform correlation information, the receive platforms must be precisely
synchronized in time. In [8], a centralized detector for a particular model is given.
Here we use a model that is similar to the model used by Stein in [9].

When a signal is transmitted by an active device, from here on referred to
as the target, it reaches each of the receiving stations after a certain amount of
time, which is the propagation delay. If the target is moving with respect to the
receiving station, then there is a Doppler shift in the frequency of the signal. Also,
the amplitude and phase of the signal are changed due to propagation through the
channel. Taking all these factors into account and assuming there is no noise, the
complex envelope of the signal that is received at the ith receiving station, after
sampling, is

Ãis̃[n− ni] exp

(

j2πki(n− ni)

N

)

where s̃[n] is the signal emitted by the target, Ãi = Aie
jφi is the change in am-

plitude and phase, ni is the propagation delay and ki is the Doppler shift. (For
simplicity we assume a discrete-frequency Doppler shift of ki

N
, for some large N .)

Note that we are using “∼” to represent complex variables. An important differ-
ence between detectors in active and passive radars is that in the active case the
received signal is an echo of the transmitted signal. Thus, the signal can be mod-
eled as known with unknown parameters. In the passive detection case, however,
the signal itself is unknown. In some cases the signal is modeled as a stochastic
process with unknown parameters [10]. We model the signal as deterministic and
completely unknown, i.e, our signal modeling assumptions coincide with those of
Stein [9].

In the next section we give a detailed description of the problem and model it
as a statistical hypothesis test. In Section 2.3 we find the GLRT for the described
hypothesis test. We compute the GLRT analytically for the special case of 2 sen-
sors. Here we show that the maximum likelihood estimate (MLE) for the delay and
Doppler is obtained by maximizing the CAF. In [9], Stein addressed the problem
of differential delay and Doppler estimation for the case of two sensors. He also
arrived at the same result that the MLE for the differential delay and Doppler is
obtained by maximizing the CAF. He did not address the problem for more than
two sensors. Also, he did not address the problem of target detection. In Section
2.4 we compare the performance of the GLRT against some commonly used detec-
tors. In Section 2.5 we make further assumptions to simplify the problem model
and derive the respective GLRTs. We provide conclusions in Section 2.6.

2.2 Methods, Assumptions, and Procedures

The problem we are addressing can be described as follows. We have M
intercepting sensors placed at multiple locations. Each of these sensors collects N
time samples in a given interval of time. The total MN samples that are collected

4
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are available for processing at a fusion center. As is usual in practice, we assume
N > M . We further assume that the noise at each of the receiver stations is
white Gaussian and also that the noise at a receiver station is independent from
noise at all the other receiver stations. For simplicity we assume that the variance
of noise is σ2 = 1. In situations where the noise does not meet these criteria,
the observations can be pre-whitened [11] before processing so that the above
assumptions hold. Now, the task of the detector at the fusion center is to detect
the presence of an unknown signal in the MN observed samples.

Let s̃[n], n = 0, 1 · · · , N−1 be the nth complex time sample of the transmitted
signal. A time delayed and Doppler shifted version of this signal and with a
different amplitude and phase reaches the sensors. Let Ãi = Aie

jφi be the change
in the amplitude and phase. Let ni be the discrete time delay and ki be the discrete
Doppler shift . Let w̃i[n] be the nth complex time sample of the additive noise at
the ith receiver station. If r̃i[n] is the nth time sample of the observation at the
ith receiver station then we can write

r̃i[n] = Ãis̃[n− ni] exp
(

j2πki(n−ni)
N

)

+ w̃i[n] n = 0, 1, · · · , N − 1

i = 0, 1, · · · ,M − 1.

When there is no signal, the observation is just noise, r̃i[n] = w̃i[n]. So, the
hypothesis test for the detection problem can be written as

H0 : r̃i[n] = w̃i[n]

H1 : r̃i[n] = Ãis̃[n− ni] exp
(

j2πki(n−ni)
N

)

+ w̃i[n] n = 0, 1, · · · , N − 1

i = 0, 1, · · · ,M − 1.

Notice that here we are modeling the received signal as unknown but deter-
ministic with unknown parameters Ãi, ni, ki, i = 0, 1, · · · ,M − 1 and s̃[n], n =
0, 1, · · · , N − 1. Now, if we let ω = exp( j2π

N
) and W̃ be the N × N matrix W̃ =

diag(ω0, ω1, · · · , ωN−1) and let P be an N × N permutation matrix defined as
[P]ij = 1 if i = j + 1 and 0 otherwise, i = 0, 1, · · · , N − 1, j = 0, 1, · · · , N − 1 and
[P]0,N−1 = 1, then we can write the hypothesis test in vector form as follows

H0 : s̃ = 0

H1 : s̃ 6= 0

where

r̃i = ÃiP
niW̃

ki
s̃+ w̃i i = 0, 1, · · · ,M − 1

and r̃i =
[

r̃i[0] r̃i[1] · · · r̃i[N − 1]
]T
, s̃ =

[

s̃[0] s̃[1] · · · s̃[N − 1]
]T

and

w̃i =
[

w̃i[0] w̃i[1] · · · w̃i[N − 1]
]T
. The permutation matrix P circularly

shifts s̃. This causes an effect as if s̃ was periodic with period equal to N samples.
So, as in [9], we assume that the signal s̃ is non-zero only in an interval that is
smaller than N samples and that the discrete-time delays are relatively small com-
pared to N . Now let r̃ = [ r̃T0 r̃T1 · · · r̃TM−1 ]T , w̃ = [ w̃T

0 w̃T
1 · · · w̃T

M−1 ]T ,

5

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



Ã =
[

Ã0 Ã1 · · · ÃM−1

]T
, n =

[

n0 n1 · · · nM−1

]T
,

k =
[

k0 k1 · · · kM−1

]T
and

H̃(Ã,n,k) =
[

(Ã0P
n0W̃

k0
)T (Ã1P

n1W̃
k1
)T · · · (ÃM−1P

nM−1W̃
kM−1

)T
]T

.

The hypothesis test can be written as follows

H0 : s̃ = 0

H1 : s̃ 6= 0

where
r̃ = H̃(Ã,n,k)s̃+ w̃

and w̃ has a complex normal distribution with zero mean and the identity matrix
as the covariance matrix, i.e, w̃ ∼ CN (0, IMN), IMN is an MN ×MN identity
matrix. Here Ã is M × 1, s̃ is N × 1, n is M × 1, k is M × 1, and are all assumed
unknown.

2.3 GLRT Detector

In hypothesis testing problems where the probability density functions (PDFs)
under both the hypotheses are completely known the Neyman-Pearson (NP) detec-
tor is the uniformly most powerful (UMP) detector [12]. When there are unknown
parameters in the PDFs, the performance of the NP detector depends on the true
value of these parameters. There are two common ways to deal with these un-
known parameters. They can be modeled as random variables with some PDF
and then integrated out or they can be modeled as unknown but deterministic and
replaced with their MLE. In the GLRT the unknown parameters are replaced by
their MLEs under the different hypotheses. Asymptotically, the GLRT is the UMP
test among all tests that are invariant [12]. The likelihood ratio for the previously
described hypotheses test is given by

L(r̃) =
p(r̃; s̃, Ã,n,k,H1)

p(r̃;H0)
(1)

If we replace the unknown parameters Ã, s̃, n and k with their respective MLEs
ˆ̃
A, ˆ̃s, n̂ and k̂ then the GLRT decides H1 if

LG(r̃) =
p(r̃; ˆ̃s, ˆ̃A, n̂, k̂,H1)

p(r̃;H0)
> γ (2)

As derived in Appendix A, the GLRT test statistic is

lnLG(r̃) = max
n,k

λmax(B̃(n,k)) (3)
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where λmax is the maximum eigenvalue and B̃ is the M × M complex cross-
ambiguity matrix (CAM) given by

[B̃]ij = r̃Hi P
niW̃

ki
(W̃

kj
)H(Pnj)H r̃j (4)

where H is conjugate transpose. Since B̃ is positive definite, the maximum eigen-
value is real and positive. Therefore the GLRT decides that a signal is present if
the maximum eigenvalue of the CAM, when also maximized over time delay and
Doppler, is greater than a threshold. It should be noticed that the diagonal ele-
ments in the CAM are the energy terms at each of the receivers, i.e, r̃Hi r̃i, and the
off-diagonal terms are the CAF values between all the pairs of sensors. For two
finite length discrete time complex signals r̃0[n] and r̃1[n], n = 0, 1, · · · , N − 1 the
energy in each of the signals is given by Ei =

∑N−1
n=0 |r̃i[n]|2, i = 0, 1 respectively and

the CAF is a two dimensional function of differential delay (∆n) and differential
Doppler shift (∆k) between the signals and is defined as

CAF (∆n,∆k) =
N−1
∑

n=0

r̃0[n]r̃
∗
1[n+∆n] exp

(

j2π∆kn

N

)

(5)

where ∗ represents complex conjugate. It is important to note that the CAM
contains CAF terms for all possible sensor pair combinations and not just a selected
set of pairs. So, the CAM can also be written as [B̃]ij = Ei if i = j and [B̃]ij =
CAFij if i 6= j where CAFij is the CAF of the observations at sensor i and sensor
j. Another interesting result is that when the correlation information is zero, all
the off diagonal terms become zero and so the maximum eigenvalue is simply the
maximum of the energies of the sensors. Hence the GLRT simply reduces to a type
of energy detector.

At first glance, the maximization of the eigenvalue appears to be on a 2M
dimensional space. This computation can be prohibitive when the number of
sensors is large. But it should be noted that the true values of the delay and
Doppler lie in a much smaller space. This is explained by the relation of the
delay and Doppler to the target location and velocity. If we assume that the
location and velocity of the sensors is known, then the delays to the sensors are a
function of the target location and the Doppler shifts are a function of the target
location and velocity. So, if (xT , yT , zT ) are the three dimensional coordinates of
the target location and (vx, vy, vz) are the target velocity components in the x, y
and z directions respectively, then we can write the delays as n(xT , yT , zT ) and the
Doppler shifts as k(xT , yT , zT , vx, vy, vz). Putting these back in equation (3) we
have

lnLG(r̃) = max
xT ,yT ,zT ,vx,vy ,vz

λmax(B̃(xT , yT , zT , vx, vy, vz)) (6)

Hence, the maximization is at most on a six dimensional space and can be per-
formed numerically. Any additional information about target location and velocity,
viz. target is on the ground or target is stationary, further reduces this space. No-
tice that the (r̂T , ŷT , ẑT , v̂x, v̂y, v̂z) that maximize the test statistic are the MLEs of
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the target position and velocity. Therefore, we have simultaneously estimated the
target location and velocity as well. We will investigate the localization problem
in section 3. Weiss investigated the problem of localization of narrowband radio
frequency transmitters in [13] and arrived at a similar result.

The fact that the GLRT test statistic is a function of the maximum eigenvalue
of the CAM can be further understood as follows. The problem can be viewed as a
rank one approximation of an observation matrix. Let R̃ be the N×M observation
matrix given by R̃ = [ r̃0 r̃1 · · · r̃M−1 ]. Assuming there are zero delays and
Doppler shifts, we have

R̃ = s̃Ã
T
+ W̃N (7)

where W̃N is the N ×M noise matrix given by W̃N = [ w̃0 w̃1 · · · w̃M−1 ].

Note that the signal component s̃Ã
T
is a rank one matrix with one singular value

=

√

s̃H s̃Ã
H
Ã =

√
λmax so that the maximum eigenvalue is λmax = s̃H s̃Ã

H
Ã.

The noise W̃N causes R̃ to be full rank. Hence, the detector attempts to extract
a characteristic of the signal. It is conjectured that in the presence of multiple
targets, say n targets, the test statistics will be the maximum n eigenvalues of the
CAM.

2.3.1 Example: A simple 2-sensor case

We have seen that the GLRT statistic is a function of the maximum eigenvalue.
In general, it is difficult to compute the eigenvalues analytically, but for the special
case of 2-sensors it is possible. When M = 2 the CAM is a 2 × 2 matrix and so
the eigenvalues are computed as follows. We have

B̃(n,k) =

[

r̃H0 P
n0W̃

k0

r̃H1 P
n1W̃

k1

]

.
[

(W̃
k0
)H(Pn0)H r̃0 (W̃

k1
)H(Pn1)H r̃1

]

=

[

r̃H0 P
n0W̃

k0
(W̃

k0
)H(Pn0)H r̃0 r̃H0 P

n0W̃
k0
(W̃

k1
)H(Pn1)H r̃1

r̃H1 P
n1W̃

k1
(W̃

k0
)H(Pn0)H r̃0 r̃H1 P

n1W̃
k1
(W̃

k1
)H(Pn1)H r̃1

]

Since Pni(Pni)H = IN (note that PTP = IN) and W̃
ki
(W̃

ki
)H = IN , where IN is

an N ×N identity matrix, we have

B̃(n,k) =

[

r̃H0 r̃0 r̃H0 P
n0W̃

k0
(W̃

k1
)H(Pn1)H r̃1

r̃H1 P
n1W̃

k1
(W̃

k0
)H(Pn0)H r̃0 r̃H1 r̃1

]

Notice that the diagonal elements are the energies at individual sensors and the
off diagonal terms are the cross ambiguity terms. Since B̃(n,k) is a 2× 2 matrix
it has two eigenvalues which can be determined analytically. The maximum of the
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two real and positive eigenvalues is

λmax(B̃(n,k)) =
r̃
H
0 r̃0 + r̃

H
1 r̃1 +

√

[

r̃
H
0 r̃0 − r̃

H
1 r̃1

]2
+ 4

∣

∣

∣r̃
H
1 P

n1W̃
k1
(W̃

k0
)H(Pn0)H r̃0

∣

∣

∣

2

2
(8)

In order to maximize λmax(B̃(n,k)) over (n,k), we have to maximize

∣

∣

∣
r̃H1 P

n1W̃
k1
(W̃

k0
)H(Pn0)H r̃0

∣

∣

∣
.

If we let ∆k = k1 − k0 and ∆n = n1 − n0 then, since Pni(Pnj)H = P(ni−nj) and

W̃
ki
(W̃

kj
)H = W̃

(ki−kj)
, we have

max
n,k

∣

∣

∣r̃
H
1 P

n1W̃
k1
(W̃

k0
)H(Pn0)H r̃0

∣

∣

∣ = max
∆n,∆k

∣

∣

∣r̃
H
1 P

∆n
W̃

∆k
r̃0

∣

∣

∣

= max
∆n,∆k

∣

∣

∣

∣

∣

N−1
∑

n=0

r̃0[n]r̃
∗
1[n+∆n] exp

(

j2π∆kn

N

)

∣

∣

∣

∣

∣

(9)

The above expression is the magnitude of the CAF in discrete time and the ∆n̂
and ∆k̂ that maximize it are the MLEs of ∆n and ∆k respectively. A similar
result was derived in [9] for the 2 sensor case in continuous time, but the CAF was
maximized only to obtain the MLEs of ∆n and ∆k and the detection problem was
not addressed. In [14] however, Holt derived a similar expression for the GLRT. He
showed that when the signal is modeled as deterministic and completely unknown,
the GLRT test statistic is a weighted sum of the energies in the observations at each
sensor plus the real part of the appropriately weighted cross ambiguity function.
Here we have derived the GLRT test statistic to be, from (8) and(9)

lnLG(r̃) =
r̃H0 r̃0 + r̃H1 r̃1

2
+

√

(

r̃H0 r̃0 − r̃H1 r̃1

2

)2

+ max
∆n,∆k

|CAF (∆n,∆k)|2 (10)

where CAF (∆n,∆k) =
∑N−1

n=0 r̃
∗
1[n + ∆n]r̃0[n] exp

(

j2π∆kn
N

)

and is the CAF pre-
viously given in (5). Therefore, the GLRT incorporates the CAF as well as the
energy information.

2.4 Results and Discussion

We compared the performance of the GLRT against two commonly used de-
tectors. One detector computes the energy of the observations individually at each
sensor and when the energy at any one sensor exceeds a predetermined threshold,
the target is declared as present. In mathematical terms, if Ei, i = 0, 1, · · · ,M − 1
are the energies of the observations at the M sensors, then the detector decides
that a target is present if max{E0, E1, · · · , EM−1} > γ

E
. This is called the maximum

energy detector. It can be noticed that this detector is based solely on the energy
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information. The other detector is one that is based solely on the cross-sensor cor-
relation information. Here a sensor is fixed as the reference sensor and the CAFs
are computed between observations from the reference sensor and all the other
sensors. When the maximum magnitude over possible delay and Doppler shifts of
any one of these CAFs exceeds a threshold, the target is declared as present. In
mathematical terms, assume sensor 0 is the reference sensor and ∆ni = (ni − n0)
and ∆ki = (ki − k0) are the difference in delay and Doppler at sensor i and sensor
0 respectively. Then if

|CAFi| = max
∆ni, ∆ki

∣

∣

∣

∣

∣

N−1
∑

n=0

r̃0[n]r̃
∗
i [n+∆ni] exp

(

j2π∆kin

N

)

∣

∣

∣

∣

∣

, i = 1, 2, · · · ,M − 1

are the maximum magnitudes over delay and Doppler of the CAFs between sensor
0 and all the other sensors, then a target is declared as present if

max{|CAF1|, |CAF2|, · · · , |CAFM−1|} > γ
CAF

.

This is referred to as pair-wise maximum CAF detector.
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Figure 1. Physical placement of the sensors and the target position used for sim-
ulation.

For the purpose of simulation a set of 11 sensors were placed in a configuration
as shown in Figure 27. To simplify the computations we assumed that the target
is stationary and so the Doppler shift is zero. However, delays are incorporated.
We used a Gaussian pulse for the signal which is shown in Figure 12. The length
of the signal in time is 10 µs and its bandwidth is approximately 0.5 MHz. The
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Figure 2. A Gaussian pulse that is used as the unknown transmitted signal

signal was sampled at a rate of Fs = 3 MHz to collect 30 non-zero samples. A
total observation interval of N = 450 samples was required in order to allow the
signal to reach all the sensors. This is shown in Figure 9. White Gaussian noise
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0.008

0.01
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x
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)

Signals reaching the sensors − no noise case

Figure 3. Signal reaching different sensors at different times with different atten-
uations.

was used as the additive noise at the sensors. The noise variance was adjusted so
that the average engery-to-noise ratio (AENR) is 10 dB. The AENR is the ratio
of the energy in the signal to the noise power at each sensor, averaged over all
the sensors, i.e., if Esi = |Ãi|2

∑N−1
n=0 |s̃[n]|2 is the energy of the signal at the ith

sensor and σ2
i is the noise variance at the ith sensor, then the signal to noise ratio

averaged over M sensors is given by 10 log
(

1
M

∑M−1
i=0

Esi
σ2
i

)

. . Here we assumed a

single target is located at (130,75) km and the maximization of the GLRT statistic
was done over (x, y). We used a grid search to maximize the test statistic. The
comparison receiver operating characteristics (ROC) curves are shown in Figure
4. We ran 1000 simulations for each of the detectors to generate the ROC curves.
The grid search was performed over a grid of size 3 km × 3 km around the true
target location with a grid-point distance of 62.5 m. The computation times in
MATLAB for the pair-wise maximum CAF detector, maximum energy detector
and the GLRT are given in Table 2.4.
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Figure 4. Comparison of GLRT against the maximum energy detector and the
pair-wise maximum CAF detector

Table 1. Comparison of the computation times for the three detectors.
pair-wise maximum CAF detector maximum energy detector GLRT

7.18 sec 1.58 sec 778.78 sec

Incorporation of the Doppler will increase the computation time further and hence
has not been included at this time. Usage of efficient maximization techniques
may reduce the computation time at which point the Doppler parameter could
be included. At this point we have investigated the GLRT itself and have left
the details of its efficient numerical computation for a future paper. It can be
noticed that the performance of the GLRT is very much better than either of
the two commonly used detectors. For a probability of false alarm PFA = 0.01
the probability of detection PD is about 0.05 for the maximum energy detector
and 0.02 for the pair-wise maximum CAF detector but is 0.45 for the GLRT.
Therefore, the GLRT which is a function of the energy at each sensor combined
with the cross-sensor correlation is better than detectors that are solely based on
either energy or cross-sensor correlation. Altes arrives at the same conclusion in
[15]. His results indicate that cross-correlation alone is usually sub optimum. He
concludes that detection should use a weighted sum of pairwise cross-correlation
between subarrays and energy detection at each subarray.

Next, in Figure 5, the same emitter signal was used for the case of M = 2
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Figure 5. GLRT vs maximum energy detector for the two cases of M=2 and M=11.

and compared against the case of M = 11. It should be noticed that when M = 2
the GLRT does only slightly better than the energy detector as there is very little
cross-correlation information but when M is increased to 11 the performance of
GLRT exceeds that of energy detector considerably. The AENR at each sensor was
set to 10 dB. In real world, as the signal travels from the target to the sensor the
signal power is attenuated, which is called the propagation loss. In our simulation,
while generating the observations at each sensor, we accounted for this propagation
loss also when computing the Ãis by making the Ãis inversely proportional to the
distance.

2.5 Some Simpler Models

The GLRT detector that was previously derived is a complete solution ac-
counting for time delays and Doppler shifts. Depending on the specific problem
appropriate assumptions can be made in the GLRT to arrive at simpler models
that can be more easily implemented.

2.5.1 Simple Bilinear Model

Assume a situation where the target and the sensors are stationary - hence
there is no Doppler. Also, assume that if a target is present, its location is a priori
known. In such cases the time delay and Doppler parameters can be dropped and
a simple bilinear (multiplicative) model [16] can be used. For such a model the
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signal model and hypothesis test are given by

r̃ = H̃(Ã)s̃+ w̃

H0 : s̃ = 0

H1 : s̃ 6= 0

where H̃(Ã) =
[

Ã0IN Ã1IN · · · ÃM−1IN
]

. Dropping the delay and Doppler
terms in equation (3), we have the GLRT test statistic for this model as

lnLG(r̃) = λmax(B̃)

where λmax is the maximum eigenvalue and B̃ is cross-sensor correlation matrix
given by

B̃ =











r̃H0 r̃0 r̃H0 r̃1 · · · r̃H0 r̃M−1

r̃H1 r̃0 r̃H1 r̃1 · · · r̃H1 r̃M−1
...

...
. . .

...
r̃HM−1r̃0 r̃HM−1r̃1 · · · r̃HM−1r̃M−1











Notice that the principal diagonal elements of B̃ are the energies at each of the
sensors. The off-diagonal elements are the cross-correlation terms. These results
are analogous to the results in Section 2.3 except that here B̃ is not a function of
the delay and Doppler.

2.5.2 Classical Linear Model

This assumes furthermore that the signal arriving at the sensors has the same
amplitude and phase which we incorporate into the unknown signal s̃. So, assuming
Ãi = 1 for i = 0, 1, · · · ,M − 1, we have the classical linear model as

r̃ = Hs̃+ w̃

where the MN × N matrix H = [ IN IN · · · IN ]T is known and r̃, s̃, w̃ are
same as defined in Section 2.2. The hypothesis test for this model is given by

H0 : s̃ = 0

H1 : s̃ 6= 0

The GLRT for this hypothesis is to decide H1 if [11]

T (r̃) =
ˆ̃sH(HHH)ˆ̃s

1/2
> γ′

where

ˆ̃s = (HHH)−1HH r̃ =
1

M

M−1
∑

i=0

r̃i (11)
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is the MLE of s̃ underH1 ( note thatH
HH =MIN). Combining the two equations,

we have

T (r̃) =

M−1
∑

i=0

ˆ̃sH r̃i

1/2
=

M−1
∑

i=0

(

N−1
∑

n=0

r̃i[n]ˆ̃s
∗[n]

)

1/2

(12)

which is an estimator-correlator summed over all the sensors. When the additive
noise is Gaussian, the T (r̃) has a central chi-squared distribution under H0 and a
noncentral chi-squared distribution under H1. The exact detection performance is
given by

PFA = Qχ2
2N
(γ′)

PD = Q
χ′2
2N (λ)

(γ′)
(13)

where Qχ2
2N

is the right-tail probability of a random variable with central chi-
squared distribution with 2N degrees of freedom and Q

χ′2
2N (λ)

is the right-tail prob-

ability of a random variable with noncentral chi-squared distribution with 2N
degrees of freedom and with λ as the noncentrality parameter. The noncentrality
parameter is

λ = s̃H(HHH)s̃ =M s̃H s̃ (14)

which is the total signal energy at all the sensors.

2.5.3 Total Energy Detector

In Section 2.4 we have seen the maximum energy detector that is commonly
used where the energies at each of the sensors are independently compared against
respective thresholds. This is decentralized detection. If the energies computed
at each sensor are all summed at a fusion center and used as a test statistic, then
we have the total energy detector. The fact that the signal received at each of
the sensors is originating from the same source is ignored here also in the detector

design. If s̃i =
[

s̃i[0] s̃i[1] · · · s̃i[N − 1]
]T

is the source signal at the ith sensor

and s̃ =
[

s̃T0 s̃T1 · · · s̃TM−1

]T
, then using the same definitions for r̃ and w̃ as

in Section 2.2, we have a classical linear model for this problem as

r̃ = s̃+ w̃

Notice that here, unlike the previous case, we have modeled the source signal for
each sensor as a different unknown parameter. The hypothesis test for this model
can be written as

H0 : s̃ = 0

H1 : s̃ 6= 0

The GLRT for this hypothesis test is to decide H1 if [11]

T (r̃) =
ˆ̃
s
Hˆ̃
s

1/2
> γ′′
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where ˆ̃
s = r̃ is the MLE of s̃ under H1. Putting this in the above equation, we

have

T (r̃) =
r̃H r̃

1/2
=

M−1
∑

i=0

N−1
∑

n=0

|r̃i[n]|2

1/2
(15)

and should be compared to (12). When the additive noise is Gaussian, here also
the T (r̃) has a central chi-squared distribution under H0 and a noncentral chi-
squared distribution under H1. But the degrees of freedom here is 2MN . The
exact detection performance of this detector is given by

PFA = Qχ2
2MN

(γ′′)

PD = Q
χ′2
2MN (λ)

(γ′′)
(16)

where the noncentrality parameter is

λ =
s̃
H
s̃

1/2

A comparison of this model to the classical linear model is given in Figure 6. This
figure was generated using λ = 20, M = 11 and N = 32.
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Classical Linear Model − eq (13)

Total Energy Detector − eq (16)

Figure 6. Exact detection performance of the Classical Linear Model compared
against the Total Energy Detector.

In situations where the possible target location region is quite large, we have
noticed that this detector performs almost as well as the GLRT derived in Section
2.3. This is because the total energy detector, unlike the GLRT, does not depend
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on the target location estimate. When the possible target location region is large,
using a similar explanation given in [11], it can be shown that the PFA increases
with the number of “bins” searched for target location. This translates as a dete-
rioration of the performance of the GLRT. While the total energy detector does
not have this degradation, it cannot be used for target localization like the GLRT.
Figure 7 shows the comparison of the performance of the GLRT against the total
energy detector where we restricted the grid search for the maximum eigenvalue
to only a region of 3km×3km square around the actual target location.
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Total Energy Detector − eq (15)
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Figure 7. Comparison of GLRT against the Total Energy Detector for observations
collected at 11 sensors with unknown time delays and Doppler shifts

2.6 Conclusion

We have modeled the problem of detection of LPI signals and derived the
GLRT detector for the model. We have shown that the GLRT uses both the
energy and the cross-sensor correlation and thus outperforms the currently used
detectors which only use either the energy or the cross correlation. While finding
the GLRT, the MLE of the target location and velocity are also simultaneously
computed. We also derived simpler detectors by making various assumptions in
the main model. We have shown that when a target has to be detected in a large
region, the total energy detector is only slightly poorer than the GLRT. In the next
paper we will discuss the performance of the MLE of the target location mentioned
here. We are also investigating the possibility of extending this technique to the
detection of multiple targets.
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3 Localization

3.1 Introduction

Passive localization has been used for many years and has always been an
important topic of research [17, 18, 19, 20]. Localization can be performed using
one or more of the emitter location dependent properties of the signal such as
angle of arrival, TDOA, FDOA or the energy of the received signal. Over the
years the general approach to localization using the TDOAs, commonly referred
to as the TDOA technique, has been to first estimate the difference in the times
of arrival of the signal at a particular pair of sensors and then use these TDOAs
to estimate the location of the emitter. Knapp and Carter [21, 22] proposed a
generalized correlation method for the estimation of the time delay for stationary
and relative motion cases. They modeled the signal as a stationary Gaussian ran-
dom process. Stein [9] on the other hand modeled the signal as deterministic but
unknown and derived the MLE for the differential delay and Doppler for a two
sensor case. Under similar assumptions for the signal, Yeredor and Angel [23] have
derived the CRLB for the TDOAs. After the TDOAs are estimated they are used
to estimate the location of the source [24, 25, 26, 27]. Quite often, due to network
capacity and computational constraints, not all sensor pair combinations are used.
Fowler [28] addressed the problem of optimal selection of a subset of the sensor
pairs. Torrieri [17] proposed a linear least squares estimator where the nonlinear
relation between the TDOAs and the emitter location is linearized by expanding
it in a Taylor series about a reference point and retaining the first two terms. This
is an iterative method which requires some kind of a priori information in order
to obtain an initial guess. Alternatively, Chan and Ho [18] use an intermediate
variable, which is a function of the emitter location, in order to linearize the non-
linear equations. They use a two-step weighted least squares (WLS) algorithm.
Additionally, when the signal waveform is known, localization may be performed
from the times of arrival (TOAs) instead of the TDOAs [29, 30]. In such TOA
based techniques the unknown transmission time occurs as a nuisance parameter
which will have to be estimated. Do et. al [31] have shown that the TOA and
the TDOA measurements are transformable to each other without a loss of in-
formation regarding positioning and thus the position estimations based on them
should be theoretically equivalent. The above techniques may be called two-step
techniques because the TOAs/TDOAs are first estimated at the local sensors and
these TOA/TDOA estimates are used in a second step to compute the location of
the emitter.

Weiss and Amar [32, 33, 34, 35] have shown that the two-step approach is
sub-optimal and proposed a direct position determination (DPD) approach. Weiss
had derived the MLE for the source location for the case of a stationary narrow-
band radio frequency transmitter using multiple stationary receivers in [32]. He
uses a continuous time model and quickly considers the sampled version without
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discussing the effects of sampling on the emitter location estimate. He shows that
the MLE of the emitter location is obtained by maximizing a quadratic form of
the signal samples whose coefficients are functions of the emitter location. He
considers the two cases of signal known and signal unknown but leaves out a more
important case - signal known but transmission time unknown which is most likely
to occur in real-world situations. He does not discuss the Cramer-Rao lower bound
(CRLB) for this problem. There is an inherent ambiguity in the commonly used
model and Weiss uses a constraint on the signal samples to resolve the ambiguity.
No discussion is provided on the generality of the constraint as to why it is an
appropriate constraint, how it resolves the ambiguity and whether it reduces the
performance. In [33] Amar and Weiss extend the approach to a multiple emitters
case. In [34] they address the problem of localization using only the Doppler fre-
quency shifts and in [35] they consider the case of a single stationary emitter and
moving receivers. In all these cases the results are similar, i.e., the MLE for the
emitter location is obtained by maximizing a quadratic form of the signal whose
coefficients are functions of the emitter location. The derivation of CRLB is at-
tempted in the later papers but is not sufficiently simplified. The effect of sampling
the signal is not discussed in any of the papers. Similar constraints are used to
resolve the ambiguity in the following papers but no discussion is provided on the
effects of the constraint.

In this paper we consider the case of a single stationary emitter and a net-
work of stationary receive sensors. We address many of the short-comings of
[32, 33, 34, 35]. We use a continuous time model and provide a straightforward
derivation for the MLE of the emitter location for the two cases of signal wave-
form known with unknown transmission time and signal waveform unknown with
unknown transmission time. Our model is valid for either narrow-band or broad-
band signals, lowpass or highpass signals. We discuss the effect of sampling the
signal on the emitter location estimate. Using simulations, we compare the MLE
against a conventional TDOA technique. We show that the variance of the MLE
is two to three orders of magnitude lower than the conventional TDOA technique.

A more difficult problem is deriving the CRLB. If the signal waveform is
assumed unknown along with the time of arrival (TOA) and the attenuation fac-
tor, then the commonly used model has an ambiguity. This ambiguity comes to
light when deriving the CRLB. Because all the unknowns in the model cannot
be uniquely resolved, the Fisher information matrix (FIM) becomes singular. We
address this ambiguity in detail and derive the necessary steps to remove it. Then
we derive the non-singular FIM. The inverse of the FIM is the CRLB. CRLB gives
the theoretical lower bound on the variance of any unbiased estimator.

An important application of the CRLB is in deriving an optimal sensor con-
figuration. The performance of a location estimator depends on the placement of
sensors. A particular configuration of the sensors is called optimal if it optimizes a
norm of the FIM. A quite common result [36, 37] is to place the sensors around the
emitter in an equi-angular configuration. But when the sensors are geographically
constrained the problem becomes much more difficult. We introduce this problem
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in Section 4.1 and provide optimal sensor configurations for the three and four
sensor cases.

In Section 6.2 we provide a detailed description of the problem. In Section
3.3 we give the CRLBs and the MLEs. Here we analyze the case of signal wave-
form unknown and the special case of signal waveform known, both cases with
an unknown transmission time. In Section 6.4 we use Monte Carlo simulations
to compare the performance of the MLE against the conventionally used TDOA
technique. We show that at higher signal-to-noise ratios (SNRs) the variance of the
MLE approaches the CRLB. In section 4.1 we introduce the problem of optimal
sensor configurations and give some results. Conclusions are provided in Section
3.5. Most of the mathematics is provided in the appendices. In Appendix B.1 we
derive a compact expression for the FIM. Appendix B.2 has the derivation of the
MLE. Appendix B.3 presents the properties of a matrix we use in the model. In
Appendix B.4 we discuss the transformation of the parameters and the constraints
used in order to remove the ambiguity in the model. In Appendix C we derive
the unconstrained optimal sensor configuration and the constrained optimal sensor
configurations for the three and four sensor cases.

3.2 Methods, Assumptions, and Procedures

Suppose that a stationary emitter is located at an unknown location (x
T
, y

T
)

and a network ofM sensors are located at known locations (xi, yi), i = 0, 1, · · · ,M−
1 as shown in Figure 27. For simplicity we are assuming a two dimensional case.
Extension to the three dimensional case is straightforward. The sensors are all
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Figure 8. Physical placement of the sensors (for M=4) and the Emitter position
used for simulation.

synchronized in time and each of the sensors intercepts the signal within the time
interval (0, T ). The emitter transmits an unknown signal s(t) for an unknown
duration Ts < T starting at an unknown time t0 < T . We shall assume that
the transmitted signal s(t) is real. It can be narrowband or wideband, lowpass
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or bandpass. After interception, the signal received at sensor i in the presence of
noise can be written as

ri(t) = Ais(t− τi) + wi(t), 0 < t < T, i = 0, 1, · · · ,M − 1 (17)

where wi(t) is a zero mean wide sense stationary additive white Gaussian ran-
dom process with spectral density N0

2
, Ai’s are the unknown attenuations due to

propagation loss, assumed real, and the τi’s are the unknown TOAs given by

τi =

√

(x
T
− xi)2 + (y

T
− yi)2

c
+ t0, i = 0, 1, · · · ,M − 1 (18)

where c is the propagation speed of the signal. We assume that the noise at a
sensor is independent of the noise at any other sensor, i.e., wi(t) and wj(t) are
independent for i 6= j and that the noise spectral density at all the sensors is equal
to N0

2
. If the noise does not satisfy these conditions then the problem becomes

more complex. For example if the noise spectral density is different at each sensor
but known, then the noise term does not factor out as in equation (22) but instead
exists in each term. A more difficult problem is when the noise spectral density is
different at each sensor and unknown, in which case, the noise spectral densities
at each of the sensors need to be estimated as well. To keep the derivations simple
we assumed the above conditions for the noise. Notice that here we do not assume
as in [9], that τi << T . Instead we just assume that max

i,j
(τi − τj) < (T − Ts).

That is, we are only assuming that the observation interval is large enough so
that, within the observation interval, the signal reaches both the nearest and the
farthest sensors from the emitter. Based on the sensor geometry it is possible to
find a sufficient condition on the length of the observation interval. If dmax is the
distance between the farthest pair of sensors, then the observation interval must
be greater than dmax

c
.

Sampling the signal in time has a quantization like effect on the estimate of the
emitter location. This is because if the signal is sampled, then the TOA estimates
are integer multiples of the sampling interval and hence quantized. For example
if the signal is sampled at a frequency of Fs samples/sec, then the estimate of
τi is quantized with a maximum quantization error of 1

2Fs
. This can introduce a

maximum quantization error of c
2Fs

in the range estimate. Therefore, it is possible
that the signal may have to be sampled at a rate much higher than the Nyquist
rate in order to achieve a desired precision in the location estimate. We have used
a continuous time model to avoid this problem in our analysis and to allow future
studies of errors due to time synchronization effects.

Figure 9 shows the signals received at the four sensors shown in Figure 27 from
an emitter located at (130, 75)km transmitting a Gaussian chirp. The propagation
loss was modeled as a 1

R
attenuation in the amplitude of the received signal, where

R is the range. So, the farthest sensor has the largest TOA and smallest amplitude.
We are assuming that the signal lies inside the observation interval (0, T ). So, we
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Figure 9. Signals received at the four sensors when a Gaussian chirp is transmitted
by the emitter located at (130,75)km.

can assume that the unknown signal is periodic with period T and write it in terms
of its Fourier series as

s(t) =
a0√
2
+

∞
∑

n=1

(an cos 2πnF0t+ bn sin 2πnF0t) (19)

where F0 =
1
T
and the Fourier coefficients are given by

a0 =
√
2

T

∫ T

0
s(t) dt, an = 2

T

∫ T

0
s(t) cos 2πnF0t dt, bn = 2

T

∫ T

0
s(t) sin 2πnF0t dt

(20)
We are using a0√

2
for the d.c component instead of the standard a0 because it

simplifies certain terms in the derivation of the CRLB. For a band-limited signal
only a finite number of the Fourier coefficients are non-zero. If the signal is a
lowpass signal, there exists an integer N such that the Fourier coefficients are all
zero for n ≥ N and if the signal is a bandpass signal, then there exist integers N1

and N2, N1 < N2, such that the Fourier coefficients are zero for n < N1 and for
n > N2. So we can approximate the lowpass signal s(t) as ( for a bandpass signal
the summation is from N1 to N2 )

s(t) =
a0√
2
+

N−1
∑

n=1

(an cos 2πnF0t+ bn sin 2πnF0t)
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This is an important step as it allows us to model any unknown signal and reduce
it to a parameter estimation problem. Now, if we let
φ = [a0 a1 · · · aN−1 b1 b2 · · · bN−1]

T be the 2N−1×1 vector of Fourier coefficients
and

h(t) =

[

1√
2

cos 2πF0t · · · cos 2π(N − 1)F0t sin 2πF0t · · · sin 2π(N − 1)F0t

]T

then we have s(t) = hT (t)φ. This reduces the uncountable unknown parameter
set {s(t) : t ∈ (0, T )} to a finite countable number of unknown parameters φ.
Therefore, we can rewrite the model in equation (45) as

ri(t) = Aih
T (t− τi)φ+ wi(t), 0 ≤ t ≤ T, i = 0, 1, · · · ,M − 1 (21)

Let τ = [τ0 τ1 · · · τM−1]
T and A = [A0 A1 · · · AM−1]

T . Let θ = [τ T AT φT ]T be
the (2M + 2N − 1)× 1 vector of unknown parameters. If we let η = [x

T
y
T
t0]

T

and α = [ηT AT φT ]T then, using equation (46), we can write the TOA vector
as a function of η as τ = g(η). So, the problem can be stated as, given the
observations ri(t), i = 0, 1, · · · ,M − 1 estimate the vector η. We are only
interested in the parameters (x

T
, y

T
) and the rest of the unknown parameters are

nuisance parameters.

3.3 CRLB and MLE of the Emitter Location

Here we will derive the CRLB and the MLE of the emitter location for the
two cases of signal waveform unknown with unknown transmission time and signal
waveform known with unknown transmission time.

3.3.1 Signal unknown with unknown transmission time

For the continuous time model in equation (45) the log-likelihood function
[38] for sensor i is given by

l = − 1

N0

∫ T

0

(ri(t)− Ais(t− τi))
2 dt (22)

Since the noise at different sensors is independent, and using equation (21) we can
write the joint log-likelihood function as

l(θ) = − 1

N0

∫ T

0

M−1
∑

i=0

(

ri(t)− Aih
T (t− τi)φ

)2
dt (23)

The (2M+2N−1×2M+2N−1) FIM [39] for this model is given by (see Appendix
B.1.1)

Iθ =
(T/2)

(N0/2)













(2πF0)
2φT

LL
Tφ(diag(A))2 (2πF0)(φ

T
Lφ)(diag(A)) (2πF0)(A ⊙ A)φT

L

(2πF0)(φ
T
L
Tφ)(diag(A)) (φTφ)IM AφT

(2πF0)L
Tφ(A ⊙ A)T φA

T (AT
A)IM













(24)
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where ⊙ represents the element by element product (Hadamard product), diag(A)
is an M ×M diagonal matrix with ith diagonal element as Ai, IM is the M ×M
identity matrix and the (2N − 1)× (2N − 1) matrix L is given by

L =







0(N,N)

[

0(1,N−1)

diag(1, 2, · · · , N − 1)

]

−
[

0(N−1,1) diag(1, 2, · · · , N − 1)
]

0(N−1,N−1)







This FIM must be inverted in order to find the CRLB for the unknown parameter
vector θ. By the form of the matrix in equation (24) it is easily shown ( see
Appendix B.4 ) that the matrix is singular with rank equal to two less than full
rank. Weiss [32] uses an ad hoc method to overcome this. We, however use
the exact transformation of the parameters [40] that is required to eliminate the
singularity of the information matrix. The singularity arises because there is an
ambiguity in the model. It is not possible to uniquely determine all the unknown
parameters in the model in equation (45). This is because of the relationship
between the TOA, attenuation factor and the signal waveform. Suppose that in
equation (45), Āi and s̄(t) are the true values of the gain and the signal waveform
that generate ri(t). Then the pair of values (Āi/γ, γs̄(t)) for any non-zero constant
γ also generate the same ri(t). So, from the observation ri(t) it is impossible to
determine the true values of Ai and s(t). A similar relationship exists between the
TOA and the signal waveform. Suppose that in equation (45), τ̄i and s̄(t) are the
true values of the TOA and the signal waveform that generate ri(t). Then the pair
of values ((τ̄i − γ), s̄(t− γ)) for any constant γ also generate the same ri(t). This
is more clearly demonstrated in Figure 10. Notice that given the received signal
it is not possible to determine whether the source signal is s1(t) with TOA τ1 or
s2(t) with TOA τ2. This causes the information matrix to be at least rank two

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

t

Transmitted Signal

s
1
(t

)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

t  (τ
1
 = 0.3)

Received Signal

s
1
(t

−
τ
1
)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

t

s
2
(t

)

0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

t  (τ
2
 = 0.2)

s
2
(t

−
τ
2
)

Figure 10. Ambiguity when signal and TOA are both unknown.

deficient, as shown in Appendix B.4. The over parameterization can be resolved
by applying an appropriate transformation that satisfies certain constraints [40].
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As shown in Appendix B.4, the appropriate transformation for this model is

τ ′ =
[

(τ1 − τ0) (τ2 − τ0) · · · (τM−1 − τ0)
]T

A′ = (1/A0)[A1 · · · AM−1]
T

φ′ = A0





1 0(1,2N−2)

0(2N−2,1)

[

IN−1 IN−1

IN−1 −IN−1

]



 diag(h(−τ0))φ
(25)

and can be shown to be the least restrictive constraint for identifiability. Here
we are using the (∗)′ notation to represent the new parameters resulting from
the transformation. Notice that the transformed parameter vectors τ ′ and A′

are TDOA and relative gain factor with respect to sensor 0 and are each reduced
by one parameter from τ and A respectively while the φ′ is simply the Fourier
coefficients of r0(t). Using these transformed parameters the model in equation
(21) can be rewritten as

r0(t) = hT (t)φ′ + w0(t) 0 ≤ t ≤ T
ri(t) = A′

ih
T (t− τ ′i)φ

′ + wi(t), 0 ≤ t ≤ T, i = 1, 2, · · · ,M − 1
(26)

where A′
i =

Ai

A0
and τ ′i = τi−τ0. So, the effect of the transformation is that the signal

at sensor 0 is made the reference signal and the signals at all the other sensors are
modeled relative to this reference signal. Although (26) seems intuitively obvious,
by arriving at it from 21) using the transformation in (25), we have mathematically
verified that (26) is indeed the correct model to use for the problem of localization
under the unknown signal case. Weiss [32, 33, 34, 35] uses (26) directly without
this rigorous argument. This is a subtle but important result which is overlooked
by Weiss. Now, let θ′ = [τ ′T A′T φ′T ]T be the (2M + 2N − 3) × 1 vector of
the unknown transformed parameters, η′ = [x

T
, y

T
]T and α′ = [η′T A′T φ′T ]T .

Notice that the TDOA vector τ ′ is a function of only (x
T
, y

T
), i.e. τ ′ = g′(η′).

The unknown transmission time t0 does not appear and thus is not a nuisance
parameter. The problem is now, given the observations ri(t), i = 0, 1, · · · ,M −
1 estimate the vector η′. The log-likelihood function for this model with the
transformed parameters is given by

l(θ′) = − 1
N0

∫ T

0

(

r0(t)− hT (t)φ′)2 dt− 1
N0

∫ T

0

∑M−1
i=1

(

ri(t)− A′
ih

T (t− τ ′i)φ
′)2 dt

(27)
As shown in the Appendix B.1.1, the FIM for this transformed parameter vector
is

I−1
θ′ = HI†

θH
T (28)

where H is given in (B.29), or equivalently,

Iθ′ =
T/2

(N0/2)













(2πF0)
2φ′ T

LL
Tφ′(diag(A′))2 (2πF0)(φ

′ T
Lφ′)(diag(A′)) (2πF0)(A

′ ⊙ A
′)φ′ T

L

(2πF0)(φ
′ T

L
Tφ′)(diag(A′)) (φ′ Tφ′)I(M−1) A

′φ′ T

(2πF0)L
Tφ′(A′ ⊙ A

′)T φ′
A

′ T (1+A
′ T

A
′)I(2N−1)













. (29)
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The FIM for the corresponding vector α′ is given by [39]

Iα′ =

(

∂θ′

∂α′ T

)T

Iθ′

(

∂θ′

∂α′ T

)

=

(

∂θ′

∂α′ T

)T

(HI†
θH

T )−1

(

∂θ′

∂α′ T

)

(30)

where the Jacobian

(

∂θ′

∂α′ T

)

is given in equation (B.18). In Appendix B.2.1

we show that, the MLE for the emitter location is obtained by maximizing over
(x

T
, y

T
), the maximum eigenvalue of the M ×M cross-correlation matrix B′ =

Y′Y′ T =
∑M−1

i=0 y′
iy

′ T
i where Y′ =

[

y′
0 y′

1 · · · y′
M−1

]

with

y′
0 =

∫ T

0
r0(t)h(t) dt and y′

i =
∫ T

0
ri(t)h(t− τ ′i) dt, i = 1, 2, · · ·M − 1. (31)

That is,
η̂′ = argmax

η′

λmax(B
′) (32)

or equivalently,
(x̂T , ŷT ) = argmax

(xT ,yT )

λmax(B
′) (33)

where λmax represents the maximum eigenvalue. The matrix B′ is real symmetric
and positive definite and so the maximum eigenvalue is real and positive.

3.3.2 Signal known with unknown transmission time

Quite often in practical situations it is possible that the signal waveform is
known but the exact transmission time t0 is unknown. In this case the number of
unknowns is reduced to 2M . Let ζ = [τ T AT ]T be the 2M×1 unknown parameter
vector. Similar to (23), the log-likelihood function is given by

l(ζ) = − 1

N0

∫ T

0

M−1
∑

i=0

(

ri(t)− Aih
T (t− τi)φ

)2
dt (34)

where φ is known. The FIM for this model is given by (see Appendix B.1.2)

Iζ =
(T/2)

(N0/2)





(2πF0)
2φTLLTφ(diag(A))2 (2πF0)(φ

TLφ)(diag(A))

(2πF0)(φ
TLTφ)(diag(A)) (φTφ)IM



 (35)

This matrix is not singular because, for this case, the unknown parameters in
the model can be uniquely determined. Therefore, there is no need to transform
the parameters as in the case of the unknown signal. Although, the unknown
transmission time t0 is still retained here as the nuisance parameter. For this
model it is shown in Appendix B.2.2 that the MLE for emitter location and the
unknown transmission time is given by

η̂ = argmax
η

φTBφ (36)
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where B = YYT and Y = [y0 y1 · · · yM−1] with yi =
∫ T

0
ri(t)h(t− τi) dt, i =

0, 1, · · ·M − 1. B is a function of (x
T
, y

T
, t0). Using the fact that hT (t − τi)φ =

s(t− τi) and η = [x
T
y
T
t0]

T we can rewrite equation (36) as

(x̂
T
, ŷ

T
, t̂0) = argmax

(x
T
,y

T
,t0)

M−1
∑

i=0

(∫ T

0

ri(t)s(t− τi) dt

)2

(37)

Equation (37) is simply the correlation values between the known signal waveform
and the observed signal at each of the sensors, summed over all the sensors. The
emitter location that yields the values of the TOAs that maximize the expression
in equation (37) is the MLE of the emitter location.

3.4 Results and Discussion

In order to evaluate the performance of the MLE we have run some simulations
and compared the performance against the CRLB and against a typically used
TDOA approach. The TDOA approach was implemented as a two-step algorithm
where, in the first step, the TDOA ∆τ̂i estimates were obtained by cross-correlating
the signal at each sensor with the signal at sensor 0. Then a 1km × 1km region
around the true emitter location was split into 100× 100 grid points and for each
emitter location on the grid point the TDOAs were computed using the formula

∆τi =

√

(x
T
− xi)2 + (y

T
− yi)2

c
−
√

(x
T
− x0)2 + (y

T
− y0)2

c
, i = 1, 2, · · · ,M−1

Next the least squared error (LSE) between the estimated TDOAs and the com-
puted TDOAs was calculated as

LSE =
M−1
∑

i=1

(∆τ̂i −∆τi)
2

This LSE is a function of the emitter location (x
T
, y

T
). The emitter location

that minimized the LSE is the estimate of the emitter location. Since, we know
that the LSE is a 2-dimensional parabolic function of the emitter location, we
improved the accuracy by fitting a parabola through the 10000 points at which
the LSE was computed. Then by using the analytical formula for the minimum
location of a 2-dimensional parabola, we computed the minimum. To measure the
levels of the zero mean additive white Gaussian noise, we used a metric called
the average SNR (ASNR). The ASNR is the ratio of the average signal power
to the noise power at each sensor averaged over all the sensors, i.e., if Psi =
|Ai|2 1

T

∫ T

0
|s(t)|2 dt is the average power of the signal at the ith sensor and N0

2
is

the noise spectral density at the ith sensor, then the SNR averaged overM sensors

is given by 10 log

(

1
M

∑M−1
i=0

Psi

(N0/2)(Fs/2)

)

dB.Figure 11 (a) shows a realization

of the LSE function. For the simulation we have used 4 sensors placed at the
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Figure 11. (a) A realization of the LSE function at an ASNR = −10 dB. (b) A
realization of the Likelihood function at an ASNR = −10 dB.

coordinates shown in Figure 27 and the emitter was placed at the coordinates
(130, 75) km, also as shown in Figure 27. The integrations in (20) and (31) are
approximated using summations with δt = 0.33 ns which means the sampling
frequency is Fs = 300 MHz. The reason for choosing such high sampling frequency
is that at this frequency, the position quantization error due to sampling is in the
order of (c/Fs) = 10−3 km. A Gaussian chirp defined by

s(t) = exp

(

−1

2
σ2

F

(

t− Ts
2

)2
)

sin(2πmt2)

was used as the unknown transmitted signal waveform. Figure 12 shows the trans-
mitted signal waveform. Notice that the signal is assumed to be approximately
zero for t < 0 and for t > Ts. We set Ts = 5µs and σ

F
= 200, 000π. The obser-

vation interval at each of the sensors was taken to be T = 0.2 ms. The unknown
transmission time of the signal was set to t0 = 0.07 ms. With this configuration the
maximum TDOA is 0.0988 ms. The frequency spectrum of the Gaussian window
is given by |S(F )| = (

√
2π/σ

F
) exp

(

−2π2F 2/σ2
F

)

[39], and the bandwidth of the
chirp is BW = 1.5 MHz. The rate of change of frequency for the linear chirp was
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Figure 12. Transmitted signal waveform.

chosen to be m =
BW

Ts
= 3× 108. A plot of the Fourier coefficients of the signal is

shown in Figure 13. A value of N = 2×BW ×T = 600 was used to have a total of
2N − 1 = 1199 unknown Fourier coefficients. Notice that the Fourier coefficients
are almost zero for n > 600. We set the ASNR at −20 dB and ran a total of 300
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a
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Figure 13. Fourier coefficients plot.

Monte Carlo simulations to generate the scatter plot and the corresponding 95%
error ellipse which are shown in Figure 14. This is also called the 95% confidence
ellipse. That is, if this estimator is used a large number of times for localization,
then around 95% of those times the true location of the emitter will lie within this
ellipse. To compute the MLE the maximization was performed using a grid search.
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Figure 14. Scatter plot and the corresponding 95% error ellipse of the MLE for an
ASNR = −20 dB.

We used a grid of size 1 km × 1 km with the grid points 0.01 km apart to have
a total of 100 × 100 = 10000 points. The grid is shown with a dotted line in the
figure. At −20 dB, the variances of the MLEs of (x

T
, y

T
) were (0.0021, 0.0006) km2

and the respective CRLBs were (0.0012, 0.0003) km2. The figure does not show 300
points because some points lie on top of the others due to position quantization
induced by the finite number of grid points in the grid search for maximization.
Due to the complex nature of the likelihood function (see Figure 11 (b)), it is not
possible to use any curve fitting techniques to reduce this quantization effect as in
the case of the conventional TDOA approach.

Figure 15 shows the comparison of the variances of the MLE and the typical
TDOA approach against the CRLB for different SNR values. Notice that for the
ASNR values below −30 dB, the variance of the MLE remains flat. This is because
of the restriction imposed by the finite grid size. As the ASNR increases above
−30 dB, the variance of the MLE reduces rapidly to approach the CRLB at around
−10 dB. Due to the nature of the conventional TDOA approach it breaks down
for the ASNR values below −17 dB. So this figure has the variances of the TDOA
approach only for the average SNR values above −17 dB. On the other hand, for
this particular setup, the results for the MLE are reliable for the ASNR values as
low as −30 dB. It is quite obvious from this figure that performance of the MLE is
very much better than a typical TDOA approach. In this case, the MLE performs
as good as a typical TDOA approach for an ASNR value of about 10 dB less than
that for the TDOA approach. Also notice that at around −10 dB, the variance of
the MLE is almost two orders of magnitude less than that of the TDOA approach.
We have noticed that for certain sensor-emitter configurations, particularly when
the emitter was very close to the sensors, the variance of the MLE is up to three
orders of magnitude less than that of the TDOA approach. Therefore, under LPI
scenarios where a conventional TDOA technique cannot be reliably used, the MLE
can be used.
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Figure 15. Comparison of variances for the emitter location estimate using MLE
and a typical TDOA approach against the CRLB for different average SNR values.

3.5 Conclusions

We have derived a direct positioning estimator for an emitter location. This
is the maximum likelihood estimator. We have shown that for an unknown signal
case, the model that is conventionally used has an inherent ambiguity and so all the
unknown parameters cannot be uniquely determined. We derived an appropriate
transformation of the parameters and re-parameterized the model to remove the
ambiguity. We have shown that for the special case of a known signal with unknown
transmission time, there is no ambiguity in the model. We derived the MLE and
the FIM for the model. The performance of the MLE was compared against a
typical two-step TDOA based localizer and against the CRLB. The performance
of the MLE is significantly better than a typical two-step TDOA based localizer.
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4 Optimal Sensor Configuration

4.1 Introduction

Apart from helping evaluate the performance of the MLE, the CRLB has other
important applications. One such application is to determine the optimal sensor
configurations. From equations (30) and (B.18) we see that the FIM of the emitter

location vector [x
T
y
T
]T depends on the Jacobian

(

∂τ ′

∂η′ T

)

. Now, this Jacobian

is dependent on the sensor emitter geometry. Figure 16 shows different geometries
and the corresponding CRLBs for an ASNR of −20 dB. It can be noticed that for
configurations that surround the emitter, the CRLB is smaller. The problem of
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Figure 16. Different Sensor Configurations.

optimizing the sensor configuration falls under a broader class of problems called
“Optimal Design of Experiments”. Generally, a norm of the FIM is chosen as the
optimization criterion and depending on the norm, the corresponding configura-

Table 2. CRLB for different geometries
Geometry CRLB(x) CRLB(y)

1 0.0012 0.0006
2 0.0024 0.0021
3 0.0015 0.0001
4 0.0656×10−4 0.2852×10−4
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tion is classified as A-optimal, where the trace of the inverse of the information
matrix is minimized, D-optimal, where the determinant of the information matrix
is maximized, T-optimal, where the trace of the information matrix is maximized
etc. Lee [36] has derived the A-optimal sensor configurations for the conventional
TDOA approach. He has shown that the optimal configuration is to place the sen-
sors with an equi-angular spacing around the emitter. Similar results were derived
by Bishop et al [37] for the D-optimal configuration. We can notice consistent
results in the example in Figure 16. When the sensors are around the emitter as
in Case 4, the CRLB is greatly reduced. Placing the sensors around the emitter
may not however be practically feasible. A practical problem of interest is to find
an optimal sensor configuration where the sensors are restricted to a sector. The
A-optimal configuration for this problem is addressed by Lee [36].

4.2 Methods, Assumptions, and Procedures

Now, from (C.1), we have the FIM for the emitter location as

Iη′ =

(

∂τ ′

∂η′ T

)T

(2πF0)
2φ′ TLLTφ′(diag(A′))2

(

∂τ ′

∂η′ T

)

If we assume that the signal level is the same at all sensors, (Ai = A) for all i, we
have the above FIM as

Iη′ = (2πF0)
2φ′ TLLTφ′A2

(

∂τ ′

∂η′ T

)T (
∂τ ′

∂η′ T

)

The geometry dependent term in the above equation is

(

∂τ ′

∂η′ T

)T (
∂τ ′

∂η′ T

)

. There-

fore, an emitter-sensor configuration that maximizes the determinant of
(

∂τ ′

∂η′ T

)T (
∂τ ′

∂η′ T

)

is called the D-optimal configuration.

We define the unconstrained problem as one where the sensors are allowed to
be anywhere in angle ( equivalent to being on a circle ) and, in the constrained
configuration problem, the sensors can only lie on an arc of the circle.

4.3 Results and Discussion

We have derived the D-optimal configuration for three and four sensor cases
(see Appendix C). That is, we derived an emitter-sensor configuration that max-
imizes the determinant of the FIM of the emitter location. In Appendix C.1 we
show that for the unconstrained problem, a D-optimal configuration is to place the
sensors at equi-angular distance around the emitter. This appears rather contra-
dictory since it is required to know the location of the emitter in order to optimally
configure the sensors for localization. In fact, this result has applications in mo-
bile emitter localization where in the recursive tracking of the emitter using a
sequence of TDOA measurements is performed [41]. This result is consistent with
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the results of Lee and Bishop. Our proof in Appendix C.1 is much simpler than
previously published results. But this configuration is not the unique D-optimal
configuration. As the number of sensors increases, there are many more config-
urations which are D-optimal but are difficult to find. For example, in the case

of six sensors, placing the sensors at an angular distance of
π

3
radians from each

other on the circle around the emitter, as shown in Figure 17 (a), is one D-optimal
configuration. Another D-optimal configuration is to place two sensors at each
of the vertices of an equilateral triangle that is inscribed in the circle around the
emitter, as shown in Figure 17 (b). Here the sensors are supposed to lie on top of
each other but for visual clarity, they are slightly displaced.

(a) (b)

Figure 17. Two D-optimal configurations for the case of M=6 sensors.

The constrained problem is much more difficult to solve. The setup of a
constrained problem is as shown in Figure 18. The sensors can lie only on the arc
with half angle θ which is marked in bold in the figure. Using the transformation

θ

Figure 18. Constrained sensor configuration setup. The sensors can lie only on the
arc marked in bold.
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of variables given in Appendix C we have the determinant as
(

∂τ ′

∂η′ T

)T (
∂τ ′

∂η′ T

)

= det(JJT )

where

J =





cosψ0 cosψ1 · · · cosψM−1

sinψ0 sinψ1 · · · sinψM−1

1 1 · · · 1





where ψi is the angle of sensor i from the positive x-axis measured at the emitter
and −θ ≤ ψi ≤ θ for all i = 0, · · · ,M − 1. Notice that when M = 3, we have

J =





cosψ0 cosψ1 cosψ2

sinψ0 sinψ1 sinψ2

1 1 1





and det(JJT ) is proportional to the square of the area of the triangle with vertices
at the sensor locations. So, in geometrical terms the problem can be viewed as
finding the triangle with the maximum area that has vertices on the constraining
arc. In order to increase the area, the base and the height of the triangle must be
increased. So, intuitively it can be seen that the optimal configuration for the three
sensor case is as shown in Figure 19 ( A rigorous proof is provided in Appendix
C.2 ).

Figure 19. The D-optimal configuration for three sensors. The triangle with the
maximum area is also shown here.

This geometrical interpretation can be extended to any number of sensors
using the Cauchy-Binet formula. For an arbitrary M , we have

det(JJT ) =
∑

S∈([M ]
3 )

det(JSJ
T
S )

where [M ] is the set {0, 1, ...,M − 1}, and
(

[M ]
3

)

is the set of 3-combinations of [M ]
(i.e., subsets of size 3). JS is the 3 × 3 matrix whose columns are the columns
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of J at indices from S. Now, each det(JSJ
T
S ) is the square of the area of the

triangle formed by the sensors with indices in S. So, maximizing the determinant
is equivalent to maximizing the sum of the squares of the areas of the triangles
formed by all combinations of sensors taken three at a time. There is a total of
(

M
3

)

such combinations. We hypothesize that in general a D-optimal configuration
for any number of sensors will consist of distributing the sensors in appropriate
proportions at the center and at the two end points of the arc. There are three
D-optimal configurations for the four sensor case, which are given in Figure 20
( proof in Appendix C.2). These derivations are very specific to the particular
number of sensors and are hard to extend to higher number of sensors. In a future
paper we will discuss this constrained optimal configuration in detail.

Figure 20. The three D-optimal configurations for four sensor case.

4.4 Conclusions

We have introduced the problem of optimizing the sensor-emitter geometry.
We derived the D-optimal configuration for the unconstrained geometry problem.
For the constrained geometry problem, we have derived the D-optimal configura-
tions for the three and four sensor cases.
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5 Knowledge Aided Design

5.1 Introduction

In knowledge aided design, the knowledge of the terrain is used for localiza-
tion. Presence of objects in a terrain induces some azimuth modulation due to
obstruction, reflection, diffraction etc of the signal. Knowledge of the location of
these obstacles and the type of modulation they induce, can aid in the localization
of the target of interest. This is particularly useful in localization in the urban
environments where there is buildings, trees etc which act as the obstacles. In this
section we will derive the Fisher information matrix and show how the azimuth
modulation induced by an obstacle can increase the information.

5.2 Methods, Assumptions, and Procedures

Suppose that we have M sensors located at (xi, yi) i = 1, · · · ,M . Let an
emitter located at an unknown location (x

T
, y

T
) transmit a known signal waveform

s(t). Assuming that the sensors are in a direct line of sight from the emitter and
that there is no multipath, the signal received at the sensors is modeled as

ri(t) = Ais(t− τi) + wi(t) i = 0, · · · ,M − 1 (38)

where Ais are the unknown attenuation factors and τis are the unknown time-
delays. wi(t) is white Gaussian noise. We want to determine the amount of
information in the azimuth modulation.

5.3 Results and Discussion

The FIM for the model in (38) is given by (see Appendix D )

I(x
T
, y

T
) = E

(N0/2)
F̄ 2

c2

∑M
i=1A

2
i (xT

, y
T
)

[

cos2 ψi sinψi cosψi

sinψi cosψi sin2 ψi

]

+

E
(N0/2)

∑M
i=1





(

∂Ai

∂x
T

)2 (

∂Ai

∂x
T

)(

∂Ai

∂y
T

)

(

∂Ai

∂y
T

)(

∂Ai

∂x
T

) (

∂Ai

∂y
T

)2





(39)

Here the Ais and τis are known functions of the target location. For example,
assuming there are no obstacles, we have

Ai(xT
, y

T
) =

Gi
√

(x
T
− xi)2 + (y

T
− yi)2

=
Gi

Ri

where Gi is a constant and

τi(xT
, y

T
) = (1/c)

√

(x
T
− xi)2 + (y

T
− yi)2 = (1/c)Ri
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where c is the propagation speed of the signal. So, the FIM for this problem is
given by ( see Appendix D.1)

I(x
T
, y

T
) =

E
(N0/2)

M
∑

i=1

{

F̄ 2

c2
.
G2

i

R2
i

[

cos2 ψi sinψi cosψi

sinψi cosψi sin2 ψi

]

+

G2
i

R4
i

[

cos2 ψi sinψi cosψi

sinψi cosψi sin2 ψi

]}

= Iτ + I
A

(40)

where the first term is the contribution from the time-delays and the second term
is the contribution from azimuth modulation. Note that the information in the
azimuth modulation is greater than the information in the time-delays if

F̄ 2

c2
.
G2

i

R2
i

<
G2

i

R4
i

⇒ Ri <

√

c2

F̄ 2

That is, for short ranges as in urban environments, or for signals with narrow
band-width, the information in the azimuth modulation becomes comparable to the
information in the time-delays. A possible range and bandwidth is given in the
following example.

5.3.1 Example 1 - No Obstacles

We have 4 sensors and an emitter located at (945, 810)m as shown in Figure
21. The transmitted signal is a Gaussian pulse given by

s(t) = exp

(

−1

2
σ2
F

(

t− Ts
2

)2
)

The length of the signal in time is Ts = 50µs and its root-mean-square (RMS)

bandwidth is
√
F̄ 2 = 111.07 kHz. This is also shown in Figure 21. So we have

the energy of the signal E = 11.284 × 10−6. The noise spectral density N0 =
2.2568 × 10−6 so that the energy to noise ratio is E

(N0/2)
= 10. As an example

assume, the gain at the sensors is taken as G = 60 dB. For this setup we have the
FIM as

I = Iτ + I
A
=

[

23.7315 17.8134
17.8134 20.1021

]

where

Iτ =

[

2.9743 2.1807
2.1807 2.3558

]

and I
A
=

[

20.7572 15.6327
15.6327 17.7463

]

(41)

Now, with the same setup but with a signal of RMS bandwidth
√
F̄ 2 = 5.55 MHz

the FIMs were

I =

[

7456.6 5467.3
5467.3 5907.3

]
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Figure 21. Physical setup and Transmitted signal

where

Iτ =

[

7435.9 5451.7
5451.7 5889.5

]

and I
A
=

[

20.7572 15.6327
15.6327 17.7463

]

(42)

As the bandwidth of the signal increased, the information in the time-delays
increased but the information in the azimuth modulation remained the same.
�

Therefore, for signals with RMS bandwidth in the order of 100 kHz and ranges
in the order of a couple of kilometers, the information in the azimuth modulation
is comparable to the information in the time-delays. For larger distance or for
signals with larger bandwidths, the information in the time-delays far exceeds the
information in the azimuth modulation and so even if there is any increase in
azimuth modulation due to presence of buildings it may not significantly increase
the total information.

5.3.2 With an Obstacle

Next, suppose that there is an obstacle. Some of the receivers may not have
a direct line of sight to the emitter. To analyze one aspect of the obstacles, viz.
blocking of the signal, let us assume that they do not reflect the signal. So, there
is no multipath and so the signal received at the sensors is still given by (38). But
now the Ais are affected by the location of the obstacles. For simplicity assume
that there is one obstacle at (x

B
, y

B
). This obstacle induces some kind of azimuth

modulation, say f
B
(x

T
, y

T
) so that we have

Ai(xT
, y

T
) =

(

Gi

Ri

)

f
B
(x

T
, y

T
)
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Now, the information matrix is given by ( see Appendix )

I(x
T
, y

T
) = E

(N0/2)

∑M
i=1

{

(

F̄ 2

c2
.
G2

i

R2
i
+

G2
i

R4
i

)

f 2
B
(x

T
, y

T
)

[

cos2 ψi sinψi cosψi

sinψi cosψi sin2 ψi

]

+

(

G2
i

R4
i

)

f 2
B
(x

T
, y

T
)Ji

}

(43)
where the matrix Ji is given in (D.3). Compare this to (40) and notice that the
information matrix is now scaled by a factor of f 2

B
(x

T
, y

T
). This factor is usually

less than one since the obstacles do not induce any gain. Also, notice that there

is an additional term

(

G2
i

R4
i

)

f 2
B
(x

T
, y

T
)Ji. This term is almost zero everywhere

except around the lines joining the obstacle to each of the sensors. This can be
seen in Figure 22. This is a plot of the azimuth modulation at the sensor at
(250, 0)m ( magenta color ) as a function of the emitter location. Notice that
as the emitter moves away from the line joining the sensor and the obstacle, the
attenuation decreases. The derivatives of the azimuth modulation function around
these lines are significant and so the contribution of the Ji matrix to the total
information matrix increases.

Figure 22. The azimuth modulation function, Ai(xT
, y

T
) from (44), at the sensor

at (250, 0)m when there is an obstacle at (600, 400)m.
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5.3.3 Example 2 - A Building as an Obstacle

Now suppose that there is a building at (600, 400)m as shown in Figure 23.
The building is going to block the signal if it is exactly between the emitter and
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)

Physical Setup

Figure 23. Setup with obstacle very close to the line of sight from the emitter to
the sensor at (250, 0)m

the sensor. We model the blocking of the signal by the building as a Gaussian
pulse. i.e the signal at a sensor is completely blocked when the building is exactly
between the sensor and the emitter and the attenuation loss reduces as a Gaussian
pulse on either side perpendicular to the direct line of sight. The attenuation also
reduces as the distance of the emitter from the building increases. So we have,

Ai(xT
, y

T
) =

(

G

Ri

)[

1− exp

(

−1

2
zT (QTC−1Q)z

)]

(44)

where z = [(x
T
− x

B
) (y

T
− y

B
)]T . The matrix C and the rotation matrix Q are

given by

C =

[

σ2
W 0
0 σ2

D

]

Q =

[

cos θ sin θ
− sin θ cos θ

]

where σ2
W and σ2

D determine the width of the building and how the attenuation
changes with distance from the building. The angle θ is the angle of the line
joining the building and the sensor i from the positive x-axis which is given by

θ = tan−1

(

yi − y
B

xi − x
B

)

. The rotation matrix is required to orient the major axis

of the Gaussian bell along the line joining the building and the sensor. Figure
22 shows this azimuth modulation at the sensor at (250, 0)m as a function of the
target position when a building is at (600, 400)m.

Using the same setup as in Example 1 but now with the building placed at
(600, 400)m as in Figure 23 there was a significant increase in the FIM. The new
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FIM was ( compare this to (41) )

I =

[

299.4020 −352.6595
−352.6595 416.8441

]

where

Iτ =

[

0.3661 0.2684
0.2684 0.2900

]

and I
A
=

[

299.0359 −352.9279
−352.9279 416.5541

]

Figure 24 shows the localization ellipses for the two information matrices. The
green represents the localization ellipse when the building is not present and the
red represents the localization ellipse when the building is present. Notice that
the minor axis is considerably reduced while the major axis is elongated. This is
because when the building blocks the signal to a sensor, we know that the emitter
is on the line joining the building and the sensor. Here the gain G was reduced to
5000 to make the ellipses fit in the figure.
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Comparision of Information using localization ellipses

Figure 24. Localization ellipses for the information matrices. Green - no building.
Red - With building.

Now, when the building is placed at the point (420, 400)m which is away from
the lines joining the emitter to the sensors as shown in Figure 25, the information
matrix was not affected and remained the same as in Example 1.

Another interesting fact is that, for the azimuth modulation function we have
assumed in (44), the derivative at any point exactly on the line joining the sensor
and building is less than at any point on either side of the line. So, when we place
the building exactly on that line at (600, 407.9137)m, the information matrix
reduced to

I =

[

7.2817 9.0970
9.0970 12.4407

]
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Figure 25. Setup with the obstacle away from the lines of sight from the emitter
to the sensors.

Next, with the same setup but with a signal of RMS bandwidth
√
F̄ 2 = 5.55 MHz

the FIMs were ( compare this to (42) )

I =

[

1214.4 318.2
318.2 1141.5

]

where

Iτ =

[

915.3456 671.0949
671.0949 724.9918

]

and I
A
=

[

299.0359 −352.9279
−352.9279 416.5541

]

Figure 26 shows the corresponding localization ellipses. So, the total information
is reduced. Even though the building increased the information in the azimuth
modulation it reduced the information in the time-delays resulting in a net decrease
in the total information. �

5.4 Conclusions

Under certain specific circumstances having the building can increase the
Fisher information matrix if the building is close to the lines of sight from the
emitter to the sensors. This is because, when the signal at any one sensor is
considerably attenuated then we know that the emitter is on the line joining the
building and the sensor. This narrows down the possible emitter position from a
plane to a single line. Then the signals received at the other sensors are useful in
determining the precise location of the emitter on that line. When the building is
not close to the direct path between the sensor and the emitter then there is no
increase in information due to the presence of the building.
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Figure 26. Localization ellipses for the information matrices. Green - no building.
Red - With building.
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6 Improved TDOA Position Fixing

6.1 Introduction

Localization is the process of extracting the location information of a signal
transmitter by intercepting the transmitted signal. The location information can
be obtained from one or more of the received signal properties such as signal
strength, angle of arrival, TDOA etc. In this paper we focus on the TDOA based
localization, also called multilateration. A conventional multilateration has two
steps. In the first step the TDOAs between at least four pairs of sensors are
estimated. In the second step, these TDOAs are used along with the known sensor
locations for position fixing. Abundant literature exists focusing on one or both
of these steps. Much of the original work, particularly in sonar, modeled the
transmitted signal as a stochastic process with the power spectrum known, in
active localization or unknown, in passive localization [25, 42, 24, 21]. The noise
at each sensor is almost always assumed to have a known power spectrum and
uncorrelated from sensor to sensor. For this model and assumptions, Hahn and
Tretter [42] proposed a delay vector estimator using correlators. They showed
that when there are M(> 2) sensors, even though we are only interested in the
M − 1 TDOAs with respect to a reference sensor, it is beneficial to compute
the M(M − 1)/2 TDOAs for all possible sensor pairs combinations using cross-
correlation and then use the Gauss-Markov estimate of the desired M − 1 TDOAs
with respect to the reference sensor. They also showed that such TDOA estimates
attain the CRLB. Knapp and Carter [21] on the other hand proposed a generalized
correlation method for the estimation of the TDOAs where in, they pre-filter the
received signals in order to maximize the SNR before correlating. Fowler and Hu
have shown that the above model and assumptions are reasonable for sonar but
not for radar [28]. They have showed that, for passive localization using radars,
the signal must be modeled as deterministic and unknown. For this signal model
assumption Stein [9] has derived the MLE for the TDOA between two sensors.
Stein’s result, similar to Hahn and Tretter’s [42], is that the MLE for the TDOA
between two sensors is the differential delay that maximizes the cross-correlation
of the signals received at the two sensors.

Irrespective of the signal model assumptions and how the TDOAs are esti-
mated, each TDOA between a pair of sensors “fixes” the position of the emitter on
a hyperboloid with foci at the locations of the two sensors. In 2-dimensions, a set of
three TDOAs uniquely define the location of the emitter as the single intersection
point of their respective hyperbolas. Therefore, position fixing using the TDOAs is
a non-linear problem. Torrieri [17] proposed a linear least squares estimator where
this nonlinear relation between the TDOAs and the emitter location is linearized
by expanding it using Taylor series about a reference point and retaining the first
two terms. Ho and Chan [43, 18] derived a closed form two-step WLS estimator
that is asymptotically efficient. They first introduce an intermediate variable that
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is a function of the emitter location to linearize the nonlinear equations and find
the least squares (LS) estimator. Next, they use the relation between the emitter
location and the intermediate variable to solve a second WLS to arrive at the final
solution. Recently, Matthew and Silverman [20] have derived a simple closed-form
least square estimator that performs quite well.

Alternately, when the signal waveform is known, as in active localization for
example, the received signals are correlated with the known signal waveform to
estimate the TOAs [39]. Here, it is common to work with the TOAs instead of
the TDOAs [29, 30, 44]. The TOA at a sensor “fixes” the emitter position on
a sphere (circle in two dimensions) centered at the sensor location. Here, the
intersection point of the spheres is taken as the estimate of the emitter location.
In the TOA based estimation the unknown transmission time often occurs as a
nuisance parameter that needs to be estimated as well. Although, Do et. al
[31] have shown that the TOA and TDOA measurements are transformable to
each other without loss of information regarding positioning and thus the position
estimators based on them should be theoretically equivalent.

These position fixing techniques are good, even efficient, in using the infor-
mation in the TDOAs. But there is more information in the received signals than
just the TDOAs. For example, a measure of the accuracy of each of the TDOAs
can also be obtained. This measure can be used to weight the TDOAs so that the
more accurate TDOA estimates have a larger contribution in the position fixing
step. Such WLS type techniques have also been proposed in the literature. But
often the weighting matrix is the inverse of the covariance matrix of the TDOAs
which is conveniently assumed to be known [27, 19]. In some cases where the SNR
is known, it is used for the weighting.

Recently, Yeredor and Angel [23] have proposed a method where the FIM is
used as the weighting matrix. In order to compute the FIM, the emitter location
must be known. So they use an iterative technique where they perform estimation
over consecutive observation intervals and use the emitter location estimated with
the previous observation interval for computing the FIM to be used in the current
observation interval. Also, the CRLB ( the inverse the FIM ) is “on the average”
the asymptotic variance of the MLE. So, it is not a very accurate measure of the
quality of the TDOA estimate from that particular observation. In this paper we
propose a novel approach to estimating the covariance matrix simultaneously with
the TDOAs from a given observation interval and then use it for the position fixing
step to improve the localization performance.

6.2 Methods, Assumptions, and Procedures

Our focus is on radar and so we use the signal modeling assumptions of
Stein [9]. Suppose that a stationary emitter is located at an unknown location
(x

T
, y

T
) and a network of M sensors are located at known locations (xi, yi), i =

0, 1, · · · ,M − 1 as shown in Figure 27. For simplicity we are assuming a two di-
mensional case. Extension to the three dimensional case is straightforward. The
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Figure 27. Physical placement of the sensors (for M=4) and the Emitter position
used for simulation.

sensors are all synchronized in time and each of the sensors intercepts the signal
within the time interval (0, T ). The emitter transmits an unknown signal s(t) for
an unknown duration Ts < T starting at an unknown time t0 < T . We shall as-
sume that the transmitted signal s(t) is real. It can be narrowband or wideband,
lowpass or bandpass. After interception, the signal received at sensor i in the
presence of noise can be written as

ri(t) = Ais(t− τi) + wi(t), 0 < t < T,
i = 0, · · · ,M − 1

(45)

where wi(t) is a zero mean wide sense stationary additive white Gaussian random
process, Ai’s are the unknown attenuations due to propagation loss, assumed real,
and the τi’s are the unknown TOAs given by

τi =

√

(x
T
− xi)2 + (y

T
− yi)2

c
+ t0, i = 0, · · · ,M − 1 (46)

where c is the propagation speed of the signal. We assume that the noise at a
sensor is independent of the noise at any other sensor, i.e., wi(t) and wj(t) are
independent for i 6= j.

6.3 Variance of the TDOAs

Let the vector of the TOAs be

τ = [τ0 · · · τM−1]
T (47)

and the vector of TDOAs with respect to sensor 0 be

τ ′ = [τ ′1 · · · τ ′M−1]
T (48)
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where τ ′i = τi − τ0, i = 1, · · · ,M − 1 and (∗)T represents the transpose of the
matrix (∗). Stein has derived the MLE for the TDOA between a pair of sensors.
The MLE for τ ′i is given by

τ̂ ′i = argmax
τ∈(−T,T )

∫ T

0

ri(t)r0(τ + t) dt. (49)

In order to estimate the TDOAs at all sensors with respect to the reference sensor a
common practice is to use Stein’s MLE to estimate each of the TDOAs individually.
That is,

τ̂ ′ = [τ̂ ′1 · · · τ̂ ′M−1]. (50)

Note that this (M − 1) × 1 TDOA vector estimate in (50) is not the MLE of
the TDOA vector in (48). In fact, when M > 2, Hahn and Tretter [42] showed
that computing the M(M − 1)/2 TDOAs for all possible sensor pairs using cross-
correlation and then using the Gauss-Markov estimate of the desired M − 1 × 1
vector of TDOAs with respect to the reference sensor is better than (50) and
attains the CRLB. When M is large computing all the M(M − 1)/2 TDOAs may
be impractical. We will continue to use (50) as the estimator for (48) as our focus
is on improving the localization accuracy by weighting the TDOAs. Instead, we
will further use (49) to also estimate the variances of each of the τ̂ ′is.

It is a well known fact that the argument that maximizes the likelihood func-
tion is the MLE while the asymptotic variance is equal to the negative of the
expected value of the curvature of the likelihood function at the peak. Therefore,
we will use the curvature of the likelihood function as the estimate of the inverse of
the variance of the corresponding TDOA. This indicates the quality of that particu-
lar estimate and not the “on the average” type quality measure as with the CRLB.
The likelihood function in (49) is the correlation function itself given by

R(τ) =

∫ T

0

ri(t)r0(τ + t) dt. (51)

Figure 28 shows segments of two correlation functions around their peak, for dif-
ferent SNRs. Here the SNR at the reference sensor is set at 0 dB. The SNRs at
two other sensors that have the same TDOA are set at 0 dB and −10 dB. The
signals received at the two sensors are correlated with the signal at the reference
sensor. The peak value is subtracted from the corresponding correlation function
to bring them to the same level for visual comparison. We define the SNR at
each sensor as the average power of the received signal to the average noise power
at the sensor, i.e, if at the ith sensor, Psi = |Ai|2 1

T

∫ T

0
|s(t)|2 dt is the average

power of the signal and N0

2
is the noise spectral density, then the SNR is given by

10 log

( Psi

(N0/2)× BW

)

dB where BW is the bandwidth of the receiver. Notice

that the signal with the higher SNR has a larger curvature indicating a more accu-
rate TDOA and hence should be weighted more heavily. Now, the actual curvature
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Figure 28. Curvatures of the correlation function at the peak for different SNRs.

of the likelihood function depends on both the transmitted signal waveform s(t)
and the SNR, both of which are unknown. So, we need to use some curve fitting
techniques around the peak to estimate the curvature of the likelihood function.
We use the simplest form of fitting viz. quadratic fitting around the peak.

6.4 Results and Discussion

For the simulation, we used the setup shown in Figure 27. We used a Gaussian
chirp as the unknown transmitted signal which is given by

s(t) = exp

(

−1

2
σ2

F

(

t− Ts
2

)2
)

sin(2πmt2) (52)

The signal is assumed to be approximately zero for t < 0 and for t > Ts.
We set Ts = 5µs and σ

F
= 2π × 105. The observation interval at each of the

sensors was taken to be T = 0.2 ms. The unknown transmission time of the
signal was set to t0 = 0.07 ms. With this configuration the maximum TDOA is
0.0988 ms. The frequency spectrum of the Gaussian window is given by |S(F )| =
(
√
2π/σ

F
) exp

(

−2π2F 2/σ2
F

)

[39], and the bandwidth of the chirp is Bs = 1.5
MHz. The rate of change of frequency for the linear chirp was chosen to be m =
Bs

Ts
= 3× 108. The correlation integrals are approximated using summations with

δt = 0.33 ns which means the sampling frequency is Fs = 300 MHz. The reason
for choosing such high sampling frequency is that at this frequency, the position
quantization error due to sampling is in the order of (c/Fs) = 10−3 km.

The regular two-step LS TDOA approach is implemented as follows. In the
first step, the TDOA τ̂ ′i estimates were obtained by cross-correlating the signal at
each sensor with the signal at sensor 0. Then a 1km × 1km region around the true
emitter location was split into 10× 10 grid points and for each emitter location on
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the grid point the TDOAs were computed using the formula

τ ′i =

√

(x
T
− xi)2 + (y

T
− yi)2

c
−
√

(x
T
− x0)2 + (y

T
− y0)2

c
(53)

for i = 1, 2, · · · ,M − 1. Next the LSE between the estimated TDOAs and the
computed TDOAs was calculated as

LSE =
M−1
∑

i=1

(τ̂ ′i − τ ′i)
2 (54)

This LSE is a function of the emitter location (x
T
, y

T
). The emitter location that

minimized the LSE is the LS estimate of the emitter location. Since we know
that the LSE is a 2-dimensional parabolic function of the emitter location near the
minimum, we improved the accuracy by fitting a parabola through the 100 points
at which the LSE was computed. The WLS estimator is also implemented in the
same manner except the WLS error (WLSE) was calculated as

WLSE =
M−1
∑

i=1

α2
i (τ̂

′
i − τ ′i)

2 (55)

where α2
i ’s are the weights. The emitter location that minimized the WLSE is the

WLS estimate of the emitter location. In order to compute the weights, we chose a
window of 30 points around the true peak of the correlation function. Using these
30 points we computed the coefficients (p1, p2, p3) of a parabola p1t

2 + p2t + p3
that fits these points in the least squares sense. Then the absolute value of the
curvature of the parabola was taken as the weights. i.e,

α = |2p1| (56)

We ran 1000 Monte Carlo simulations to compare the performance of the two
estimators. The SNR was set at 0 dB at the reference sensor and at the other two
sensors. At the fourth sensor, the SNR was varied from −30 dB to −20 dB. Figure
29 shows the comparison of the mean square error of the 1000 estimates for each
of the two estimators for different SNR values of the fourth sensor.

Notice that the performance of the LS TDOA approach deteriorates signif-
icantly as the SNR goes below −28 dB. This is because at such low SNRs the
TDOA estimator in (49) completely breaks down. When the noise level is low, the
peak location of (51) is close to the true TDOA value but when the noise level is
sufficiently high, the peak of (51) can occur anywhere in (−T, T ) with high prob-
ability. Figure 30 shows the histogram of the peak of the correlation function in
(51) for the SNR values of 0 dB and −30 dB. Notice that at 0 dB the peak location
lies very close to the true TDOA value of −0.0987 ms while at −30 dB, the peak
of a realization appears at −0.06 ms also. When this outlier is used in the second
step for position fixing, the location estimate is far from the true location. In the
WLS TDOA approach, the effect of this outlier TDOA estimate is minimized by
the weighting.
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Figure 29. MSE of the 1000 estimates for each of the two estimators for different
SNR values of the fourth sensor.
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Figure 30. Histograms of the peak location: (a) SNR = 0 dB. (b) SNR = −30 dB.

6.5 Conclusion

We have proposed a weighted least squares position fixing technique for the
multilateration problem. We showed that the TDOA estimator breaks down for
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very low signal-to-noise ratios and when such TDOA estimates are used for position
fixing, the location estimates are far from the true emitter location. Our weight-
ing approach mitigates the effect of such outliers in the position fixing step. We
proposed a simple technique for the computation of the weights from the received
signal.
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7 Overall Conclusion

We have addressed the problem of passively gathering information about an
emitter of electronic signals using distributed sensors. First we proposed an asymp-
totically optimal technique for detection of the presence or absence of such signals
in the data collected at the distributed sensors. This is a centralized detector
unlike the commonly used decentralized decision fusion techniques. The derived
detector is the generalized likelihood ratio test (GLRT) detector. We also derived
simpler detectors from the GLRT by making various assumptions. Receiver oper-
ating characteristics (ROC) curves for currently used detectors are computed and
compared to the ROC curves for the GLRT detector. After the presence of such
signals is detected, the next step is to estimate the location of the emitter. For
this we proposed the maximum likelihood estimator (MLE). The conventional ap-
proach for localization using multiple sensors is to first estimate the time difference
of arrivals (TDOAs) of the signals, independently between pairs of sensors and then
to find the location of the emitter using the intersection point of the hyperbolas
defined by these TDOAs. This is referred to as the conventional TDOA technique
and it has been shown in the literature that this two-step approach is suboptimal
in comparison to what is called the direct position determination (DPD) approach.
In the DPD approach, the intermediate step of estimating the TDOAs is bypassed
and the location is estimated directly from the observations. In this paper we
take the DPD approach instead of the conventional two-step approach. The DPD
type localizers that have been proposed in the literature are based on certain as-
sumptions on the transmitted signal such as narrowband or wideband, lowpass or
bandpass etc. We make no such assumptions on the signal and this paper covers
a wide variety of transmitted signals. In passive localization, it is common to not
know the transmission time of the signal and more often the signal waveform it-
self is unknown. So, we have analyzed these two commonly occurring cases of (i)
signal waveform unknown and (ii) signal waveform known with unknown trans-
mission time. The localizers proposed in literature assumed discrete time but they
have not addressed the quantization like effect on the location estimate due to
sampling of the received signals. To avoid this quantization like effect, we have
used a continuous time model. We have also derived the Fisher Information Matrix
(FIM) which gives a deeper insight into the relations between various parameters
in the model and their identifiability. We showed that the proposed MLE outper-
forms the conventional two-step localizers and also attains the Cramer Rao Lower
Bound (CRLB) for high signal-to-noise ratios (SNR). Though the performance of
the MLE attains the CRLB, there is still scope for improvement. This improve-
ment comes from the geometry of the sensors. We showed that for a given SNR,
the CRLB depends on the sensor geometry. Thus, the sensor geometry can be
optimized in order to further reduce the CRLB and also the variance of the MLE.
We have defined this problem of optimizing the sensor geometry and derived the
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optimal sensor configurations for a few specific scenarios. The optimization of the
sensor geometry for a general scenario is quite elusive and still open for research.
In addition to efficient signal processing as in the MLE and optimizing the sensor
geometries, the localization performance can further be enhanced by using infor-
mation about the terrain. This is commonly referred to as the knowledge aided
design (KAD). KAD is particularly useful for localization in urban environments
where the distances are small and the knowledge of the terrain is very well known.
We investigated the aspect of azimuth modulation induced by various objects in
the terrain and the usefulness of this modulation for localization. In particular,
we have shown that when an obstacle blocks the signal to one of the sensors, then
there is increase in the over all information of the location of the emitter. All the
concepts mentioned above are for improving the localization performance and do
require altering/increasing the existing physical resources. For example the MLE
requires high bandwidth links between all the sensors and the fusion center in order
to transmit all the data collected at each sensor for simultaneous processing at the
fusion center. This is in contrast to the conventional TDOA which only requires
low bandwidth links to the fusion center because, here only the TDOA instead of
the complete observation, is transmitted to the fusion center. So finally we pro-
pose an improvement to the conventional TDOA approach which does not require
any additional physical resources but still significantly increases the localization
performance particularly for SNRs at the break down range. The only additional
piece of information that needs to be transmitted to the fusion center along with
the TDOA is the curvature of the likelihood function. In the conventional TDOA
approach the first step is to estimate the TDOAs and the second step, called the
position fixing, is to estimate the emitter location as the intersection of the hyper-
boloids defined by these TDOAs. For the TDOA estimation the commonly used
estimator is the time-delay that maximizes the cross-correlation function. This
is the MLE of the TDOA ( note that this is not the MLE of the emitter loca-
tion which we have derived ) and the cross-correlation function is the maximum
likelihood function. Now, since the asymptotic variance of an MLE is equal to
the negative of the expected value of the curvature of the likelihood function, we
proposed a weighted least squares type position fixing technique where the weights
can be computed from the curvature of the likelihood function. Hence, we have
addressed the problem of passively gathering information about an emitter of elec-
tronic signals using distributed sensors and investigated various aspects that can
increase this information.
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A Derivation of the GLRT Detector

The GLRT decides H1 if

LG(r̃) =
p(r̃; ˆ̃s, ˆ̃A, n̂, k̂,H1)

p(r̃;H0)
> γ

or equivalently if the test statistic

lnLG(r̃) > ln γ = γ′

Here ˆ̃s, ˆ̃
A,n̂ and k̂ are the MLEs of s̃, Ã, n and k respectively assuming H1 is

true. Since w̃ ∼ CN (0, IMN) we have

LG(r̃) =

1
πNM exp

(

−
(

r̃− H̃(Ã,n,k)ˆ̃s
)H (

r̃− H̃(Ã,n,k)ˆ̃s
)

)

1
πNM exp

(

−r̃H r̃
)

Taking logarithms we have

lnLG(r̃) = −
(

r̃− H̃( ˆ̃A, n̂, k̂)ˆ̃s
)H (

r̃− H̃( ˆ̃A, n̂, k̂)ˆ̃s
)

+ r̃H r̃

= 2Re
[

r̃HH̃( ˆ̃A, n̂, k̂)ˆ̃s
]

−
(

H̃( ˆ̃A, n̂, k̂)ˆ̃s
)H (

H̃( ˆ̃A, n̂, k̂)ˆ̃s
)

The MLEs ˆ̃s, ˆ̃A, n̂ and k̂ maximize p(r̃; s̃, Ã,n,k;H1). But,

p(r̃; s̃, Ã,n,k,H1) =
1

πNM
exp

[

−
(

r̃− H̃(Ã,n,k)s̃
)H (

r̃− H̃(Ã,n,k)s̃
)

]

Maximizing p(r̃; s̃, Ã,n,k,H1) over s̃, Ã,n and k is equivalent to minimizing the
exponent which is

J =
(

r̃− H̃(Ã,n,k)s̃
)H (

r̃− H̃(Ã,n,k)s̃
)

From [39] we have the MLE of s̃ as

ˆ̃s =
[

H̃
H
(Ã,n,k)H̃(Ã,n,k)

]−1

H̃(Ã,n,k)r̃

Putting this back in the test statistic we have

lnLG(r̃) = max
Ã,n,k

[

r̃HH̃(Ã,n,k)
[

H̃
H
(Ã,n,k)H̃(Ã,n,k)

]−1

H̃
H
(Ã,n,k)r̃

]
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Notice that
H̃

H
(Ã,n,k)H̃(Ã,n,k) = (Ã

H
Ã)IN

and

H̃
H
(Ã,n,k)r̃ =

(

M−1
∑

i=0

Ã∗
i (W̃

ki
)H(Pni)H r̃i

)

so that we have

lnLG(r̃) = max
Ã,n,k

r̃HH̃(Ã,n,k)H̃
H
(Ã,n,k)r̃

(Ã
H
Ã)

= max
Ã,n,k

(

H̃
H
(Ã,n,k)r̃

)H (

H̃
H
(Ã,n,k)r̃

)

(Ã
H
Ã)

= max
Ã,n,k

(

M−1
∑

i=0

Ã∗
i (W̃

ki
)H(Pni)H r̃i

)H (M−1
∑

i=0

Ã∗
i (W̃

ki
)H(Pni)H r̃i

)

(Ã
H
Ã)

= max
Ã,n,k

(

M−1
∑

i=0

Ãir̃
H
i (P

ni)(W̃
ki
)

)(

M−1
∑

i=0

Ã∗
i (W̃

ki
)H(Pni)H r̃i

)

(Ã
H
Ã)

= max
Ã,n,k

M−1
∑

i=0

M−1
∑

j=0

Ãir̃
H
i (P

ni)(W̃
ki
)(W̃

kj
)H(Pnj)H r̃jÃ

∗
j

(Ã
H
Ã)

If we let B̃(n,k) be the cross ambiguity matrix defined as

B̃(n, k) =











r̃
H
0 P

n0W̃
k0

r̃
H
1 P

n1W̃
k1

...

r̃
H
M−1P

nM−1W̃
kM−1











.











r̃
H
0 P

n0W̃
k0

r̃
H
1 P

n1W̃
k1

...

r̃
H
M−1P

nM−1W̃
kM−1











H

=

















r̃
H
0 P

n0W̃
k0 (W̃

k0 )H (Pn0 )H r̃0 · · · r̃
H
0 P

n0W̃
k0 (W̃

kM−1 )H (P
nM−1 )H r̃M−1

r̃
H
1 P

n1W̃
k1 (W̃

k0 )H (Pn0 )H r̃0 · · · r̃
H
1 P

n1W̃
k1 (W̃

kM−1 )H (P
nM−1 )H r̃M−1

.

.

.

.

.

.

.

.

.

r̃
H
M−1P

nM−1W̃
kM−1 (W̃

k0 )H (Pn0 )H r̃0 · · · r̃
H
M−1P

nM−1W̃
kM−1 (W̃

kM−1 )H (P
nM−1 )H r̃M−1

















M×M

then we have a Hermitian form and so

lnLG(r̃) = max
Ã,n,k

Ã
H
B̃

∗
(n,k)Ã

Ã
H
Ã

= max
n,k

λmax(B̃
∗
(n,k))
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where λmax is the maximum eigenvalue of B̃
∗
(n,k). The MLE of Ã is the eigen-

vector corresponding to λmax(B̃
∗
(n,k)). Therefore, the GLRT decides H1 if

max
n,k

λmax(B̃
∗
(n,k)) > γ′

The cross ambiguity matrix B̃(n,k) is Hermitian with real and positive eigenvalues.

So, we have λmax(B̃
∗
(n,k)) = λmax(B̃(n,k)) and so the GLRT decides H1 if

max
n,k

λmax(B̃(n,k)) > γ′
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B Localization

B.1 CRLB

We will derive the CRLB for the emitter location estimate. First, we will show
that the FIM for the model used for unknown signal with unknown transmission
time case is singular. We will then use a transformation of the parameters in the
model and derive the CRLB. Let τ = [τ0 τ1 · · · τM−1]

T , A = [A0 A1 · · · AM−1]
T

and φ = [a0 a1 · · · aN−1 b1 b2 · · · bN−1]
T , where

a0 =
√
2

T

∫ T

0
s(t) dt, an = 2

T

∫ T

0
s(t) cos 2πnF0t dt, bn = 2

T

∫ T

0
s(t) sin 2πnF0t dt

Let θ = [τ T AT φT ]T . The TOAs τi are a function of the emitter location (x
T
, y

T
)

and the signal transmission time t0.

τi =

√

(x
T
− xi)2 + (y

T
− yi)2

c
+ t0

where c is the propagation speed of the signal. If l(θ) is the log-likelihood function,
then the FIM is given by

Iθ =

























−E
{

∂2l(θ)

∂τ∂τ T

}

−E
{

∂2l(θ)

∂τ∂AT

}

−E
{

∂2l(θ)

∂τ∂φT

}

−E
{

∂2l(θ)

∂A∂τ T

}

−E
{

∂2l(θ)

∂A∂AT

}

−E
{

∂2l(θ)

∂A∂φT

}

−E
{

∂2l(θ)

∂φ∂τ T

}

−E
{

∂2l(θ)

∂φ∂AT

}

−E
{

∂2l(θ)

∂φ∂φT

}

























(B.1)

B.1.1 Signal unknown with unknown transmission time

From (23), we have the log-likelihood function as

l(θ) = − 1

N0

∫ T

0

M−1
∑

m=0

(

xm(t)− Amh
T (t− τm)φ

)2
dt (B.2)

where h(t) is as defined in Appendix B.3. Partial differentiation with respect to
(w.r.t) τi gives,

∂l(θ)

∂τi
= − 1

N0

∫ T

0

2
(

ri(t)− Aih
T (t− τi)φ

)

(

−Ai
∂hT (t− τi)

∂τi
φ

)

dt (B.3)

and w.r.t Ai gives,

∂l(θ)

∂Ai

= − 1

N0

∫ T

0

2
(

ri(t)− Aih
T (t− τi)φ

) (

−hT (t− τi)φ
)

dt (B.4)
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for i = 0, 1, · · · ,M − 1. Partial differentiation w.r.t φ gives,

∂l(θ)

∂φ
= − 1

N0

∫ T

0

M−1
∑

m=0

2
(

xm(t)− Amh
T (t− τm)φ

) (

−Amh
T (t− τm)

)

dt (B.5)

Next we evaluate the second derivatives. Partial differentiation of (B.3) w.r.t τi
gives,

∂2l(θ)
∂τ2i

= − 2
N0

[

∫ T

0

(

ri(t)− Aih
T (t− τi)φ

)

(

−Ai
∂2h

T
(t−τi)

∂τ2i
φ

)

dt

+
∫ T

0

(

−Ai
∂h

T
(t−τi)
∂τi

φ

)2

dt

]

.

Taking the negative of the expected value of both sides and using (B.27) gives,

−E
{

∂2l(θ)

∂τ 2i

}

=
2

N0

∫ T

0

(

Ai
∂hT (t− τi)

∂τi
φ

)2

dt

=
A2

i

(N0/2)
φT

[∫ T

0

∂h(t− τi)

∂τi

∂hT (t− τi)

∂τi

]

φ

=
(T/2)(2πF0)

2

(N0/2)
(φTLLTφ) A2

i

where the 2N−1×2N−1 matrix L is as defined in Appendix B.3. Since
∂2l(θ)

∂τi∂τj
= 0

for i 6= j, we have

-E

{

∂2l(θ)

∂τ∂τ T

}

=
(T/2)(2πF0)

2

(N0/2)
φTLLTφ(diag(A))2 (B.6)

where diag(A) is an M × M diagonal matrix with ith diagonal element as Ai.
Partial differentiation of (B.4) w.r.t τi gives,

∂2l(θ)

∂τi∂Ai

= − 2

N0

[∫ T

0

(

ri(t)− Aih
T (t− τi)φ

)

(

−∂h
T (t− τi)

∂τi
φ

)

dt+
∫ T

0

(

−Ai
∂hT (t− τi)

∂τi
φ

)

(

−hT (t− τi)φ
)

dt

]

Taking the negative of the expected value of both sides and using (B.28) gives,

−E
{

∂2l(θ)

∂τi∂Ai

}

=
Ai

(N0/2)
φT

[∫ T

0

∂h(t− τi)

∂τi
hT (t− τi) dt

]

φ

=
(T/2)(2πF0)

(N0/2)
(φTLφ) Ai
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Since
∂2l(θ)

∂τi∂Aj

= 0 for i 6= j, we have

-E

{

∂2l(θ)

∂τ∂AT

}

=
(T/2)(2πF0)

(N0/2)
(φTLφ)(diag(A)) (B.7)

Partial differentiation of (B.5) w.r.t τi gives,

∂2l(θ)

∂τi∂φ
T

= − 2

N0

[∫ T

0

(

ri(t)− Aih
T (t− τi)φ

)

(

−Ai
∂hT (t− τi)

∂τi

)

dt+
∫ T

0

(

−Ai
∂hT (t− τi)

∂τi
φ

)

(

−Aih
T (t− τi)

)

dt

]

Taking the negative of the expected value of both sides and using (B.28) gives,

−E
{

∂2l(θ)

∂τi∂φ
T

}

=
A2

i

(N0/2)
φT

[∫ T

0

∂h(t− τi)

∂τi
hT (t− τi) dt

]

=
(T/2)(2πF0)A

2
i

(N0/2)
φTL

So, we have

-E

{

∂2l(θ)

∂τ∂φT

}

=
(T/2)(2πF0)

(N0/2)
(A⊙A)φTL (B.8)

Partial differentiation of (B.4) w.r.t Ai and using (B.26) gives,

∂2l(θ)

∂A2
i

= − 1

(N0/2)

∫ T

0

(hT (t− τi)φ)
2

= − 1

(N0/2)
φT

[∫ T

0

h(t− τi)h
T (t− τi)

]

φ

= − (T/2)

(N0/2)
φTφ

Taking the negative of the expected value on both sides gives,

-E

{

∂2l(θ)

∂A∂AT

}

=
(T/2)φTφ

(N0/2)
IM (B.9)
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Partial differentiation of (B.5) w.r.t Ai gives,

∂2l(θ)

∂Ai∂φ
T
= − 2

N0

[∫ T

0

(

ri(t)− Aih
T (t− τi)φ

) (

−hT (t− τi)
)

dt+
∫ T

0

(−hT (t− τi)φ)(−Aih
T (t− τi)) dt

]

Taking the negative of the expected value of both sides and using (B.26) gives,

−E
{

∂2l(θ)

∂Ai∂φ
T

}

=
2Ai

N0

∫ T

0

hT (t− τi)φh
T (t− τi) dt

=
2Ai

N0

φT

∫ T

0

h(t− τi)h
T (t− τi) dt

=
(T/2)

(N0/2)
Aiφ

T

and so

-E

{

∂2l(θ)

∂A∂φT

}

=
(T/2)

(N0/2)
AφT (B.10)

Partial differentiation of (B.5) w.r.t φ and using (B.26) gives,

∂2l(θ)

∂φ∂φT
= − 2

N0

∫ T

0

M−1
∑

i=0

(

−Aih
T (t− τi)

) (

−Aih
T (t− τi)

)

dt

= −
M−1
∑

i=0

A2
i

(N0/2)

∫ T

0

h(t− τi)h
T (t− τi) dt

= −
M−1
∑

i=0

(T/2)

(N0/2)
I(2N−1) A

2
i

and so

-E

{

∂2l(θ)

∂φ∂φT

}

=
(T/2)

(N0/2)
I(2N−1)

M−1
∑

i=0

A2
i =

(T/2)ATA

(N0/2)
I(2N−1) (B.11)

Putting (B.6), (B.7), (B.8), (B.9), (B.10), (B.11) back in (B.1), we have

Iθ =
(T/2)

(N0/2)













(2πF0)
2φT

LL
Tφ(diag(A))2 (2πF0)(φ

T
Lφ)(diag(A)) (2πF0)(A ⊙ A)φT

L

(2πF0)(φ
T
L
Tφ)(diag(A)) (φTφ)IM AφT

(2πF0)L
Tφ(A ⊙ A)T φA

T (AT
A)I(2N−1)













(B.12)
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The CRLB matrix for the unknown parameter vector θ is the inverse of the matrix
Iθ. But in Appendix B.4 it is shown that the null space of Iθ is not empty and
so it is not invertible. This is because the log-likelihood function is not uniquely
defined by the model in (23). To eliminate the over parameterization we use the
following transformations.

τ ′ =
[

(τ1 − τ0) (τ2 − τ0) · · · (τM−1 − τ0)
]T

A′ = (1/A0)[A1 · · · AM−1]
T

φ′ = A0





1 0(1,2N−2)

0(2N−2,1)

[

IN−1 IN−1

IN−1 −IN−1

]



 diag(h(−τ0))φ
(B.13)

Let θ′ = [τ ′ T A′ T φ′ T ]T . This is a function of θ. Let H =

(

∂θ′

∂θ

)

be the

Jacobian. If H has row vectors that are linear combinations of those eigenvectors
of Iθ that have nonzero eigenvalues then the CRLB of θ′ is given by HI†

θH
T [40].

The † is used to represent the generalized inverse. This condition is verified in
Appendix B.4. Therefore,

I−1
θ′ = HI†

θH
T (B.14)

Alternately, the log-likelihood function for this model with the transformed pa-
rameters is given by

l(θ′) = − 1

N0

∫ T

0

(

r0(t)− hT (t)φ′)2 dt− 1

N0

∫ T

0

M−1
∑

i=1

(

ri(t)− A′
ih

T (t− τ ′i)φ
′)2 dt

(B.15)
So, computing the derivatives to find the FIM as done previously yields the FIM
for the transformed parameter vector as

Iθ′ =
T/2

(N0/2)













(2πF0)
2φ′ T

LL
Tφ′(diag(A′))2 (2πF0)(φ

′ T
Lφ′)(diag(A′)) (2πF0)(A

′ ⊙ A
′)φ′ T

L

(2πF0)(φ
′ T

L
Tφ′)(diag(A′)) (φ′ Tφ′)IM−1 A

′φ′ T

(2πF0)L
Tφ′(A′ ⊙ A

′)T φ′
A

′ T (1 + A
′ T

A
′)I(2N−1)













(B.16)

We have verified numerically that (B.14) is equivalent to (B.16). The elements of
the TDOA vector τ ′ are given by

τ ′i = (τi − τ0) =

√

(x
T
− xi)2 + (y

T
− yi)2

c
−
√

(x
T
− x0)2 + (y

T
− y0)2

c

so that the new parameter vector τ ′ is a function of only the emitter location
(x

T
, y

T
). So, if we let η′ = [x

T
y
T
]T and α′ = [η′ T A′ T φ′ T ]T we have

Iα′ =

(

∂θ′

∂α′ T

)T

Iθ′

(

∂θ′

∂α′ T

)

=

(

∂θ′

∂α′ T

)T

(HI†
θH

T )−1

(

∂θ′

∂α′ T

)

(B.17)
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The Jacobian is given by the (2M + 2N − 3,M + 2N) matrix

(

∂θ′

∂α′ T

)

=

























(

∂τ ′

∂η′ T

) (

∂τ ′

∂A′ T

) (

∂τ ′

∂φ′ T

)

(

∂A′

∂η′ T

) (

∂A′

∂A′ T

) (

∂A′

∂φ′ T

)

(

∂φ′

∂η′ T

) (

∂φ′

∂A′ T

) (

∂φ′

∂φ′ T

)

























=

















(

∂τ ′

∂η′ T

)

0(M,M) 0(M,2N−1)

0(M,2) IM−1 0(M,2N−1)

0(2N−1,2) 0(2N−1,M) I(2N−1)

















(B.18)

where the (M − 1)× 2 matrix

(

∂τ ′

∂η′ T

)

=

(1/c)





















(x
T
− x1)

d1
− (x

T
− x0)

d0

(y
T
− y1)

d1
− (y

T
− y0)

d0
(x

T
− x2)

d2
− (x

T
− x0)

d0

(y
T
− y2)

d2
− (y

T
− y0)

d0
...

...
(x

T
− xM−1)

dM−1

− (x
T
− x0)

d0

(x
T
− xM−1)

dM−1

− (y
T
− y0)

d0





















(B.19)

where di, i = 0, · · · ,M − 1 is the distance between the sensor i and the emitter.

B.1.2 Signal known with unknown transmission time

From (34) we have the log-likelihood function as

l(ζ) = − 1

N0

∫ T

0

M−1
∑

i=0

(

ri(t)− Aih
T (t− τi)φ

)2
dt (B.20)

Here the 2M×1 unknown parameter vector is ζ = [τ T AT ]T . So, the FIM is given
by

Iζ =













−E
{

∂2l(θ)

∂τ∂τ T

}

−E
{

∂2l(θ)

∂τ∂AT

}

−E
{

∂2l(θ)

∂A∂τ T

}

−E
{

∂2l(θ)

∂A∂AT

}













(B.21)
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Using (B.6), (B.7) and (B.9), we have

Iζ =
(T/2)

(N0/2)





(2πF0)
2φTLLTφ(diag(A))2 (2πF0)(φ

TLφ)(diag(A))

(2πF0)(φ
TLTφ)(diag(A)) (φTφ)IM



 (B.22)

B.2 Maximum Likelihood Estimator

Here we will derive the MLE for the two cases of signal unknown with unknown
transmission time and signal known with unknown transmission time.

B.2.1 Signal unknown with unknown transmission time

The log-likelihood function with the transformed parameters is given by

l(θ′) = − 1

N0

∫ T

0

(

r0(t)− hT (t)φ′)2 dt− 1

N0

∫ T

0

M−1
∑

i=1

(

ri(t)− A′
ih

T (t− τ ′i)φ
′)2 dt

(B.23)
Partial differentiation w.r.t φ′ gives,

∂l(θ′)

∂φ′ = − 1

N0

∫ T

0

2
(

r0(t)− hT (t)φ′) (−hT (t)
)

dt

− 1

N0

∫ T

0

M−1
∑

i=1

2
(

ri(t)− A′
ih

T (t− τ ′i)φ
′) (−A′

ih
T (t− τ ′i)

)

dt

In order to find the maximum, we equate the above partial derivative to zero,
which gives,

∫ T

0

r0(t)h
T (t) dt− φ′ T

(∫ T

0

h(t)hT (t) dt

)

+
M−1
∑

i=1

A′
i

(∫ T

0

ri(t)h
T (t− τ ′i) dt

)

−

A′ 2
i φ

′ T
(∫ T

0

h(t− τ ′i)h
T (t− τ ′i) dt

)

= 0

Using the properties of the vector h(t) as shown in Appendix B.3, we have

∫ T

0
r0(t)h

T (t) dt− (T/2)φ′ T+
∑M−1

i=1 A′
i

(

∫ T

0
ri(t)h

T (t− τ ′i) dt
)

− (T/2)
∑M−1

i=1 A′ 2
i φ

′ T = 0

If we replace the integrals with

y′
0 =

∫ T

0

r0(t)h(t) dt and y′
i =

∫ T

0

ri(t)h(t− τ ′i) dt for i = 1, 2, · · ·M − 1,

then we have

y′ T
0 − (T/2)φ′ T +

M−1
∑

i=1

A′
iy

′ T
i − (T/2)

M−1
∑

i=1

A′ 2
i φ

′ T = 0
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So, the MLE of φ′ is

φ̂
′
=

(2/T )
(

y′
0 +

∑M−1
i=1 A′

iy
′
i

)

(1 +A′ TA′)
.

Putting this back in (B.23), we have

l(θ′) = − 1

N0

M−1
∑

i=0

∫ T

0

x2i (t) dt+
1

N0

(2/T )
(

y′ T
0 +

∑M−1
i=1 A′

iy
′ T
i

)(

y′
0 +

∑M−1
i=1 A′

iy
′
i

)

(1 +A′ TA′)
.

Maximizing l(θ′) w.r.t A′ and τ ′ is equivalent to maximizing the second term. So,
let

f(A′, τ ′) =

(

y′ T
0 +

∑M−1
i=1 A′

iy
′ T
i

)(

y′
0 +

∑M−1
i=1 A′

iy
′
i

)

(1 +A′ TA′)

If we let Y′ = [y′
0 y

′
1 · · · y′

M−1] be the 2N−1×M matrix then the maximum value
of f(A′, τ ′) w.r.t A′ is fmax(τ

′) is equal to the maximum eigenvalue of Y′Y′ T . Let
B′ = YY′ T . The matrix B′ is a function of τ ′ = g′(η′) which is a function of
the emitter location (x

T
, y

T
). So, the MLE of the emitter location is found by

maximizing the maximum eigenvalue of B′(x
T
, y

T
). i.e,

(x̂T , ŷT ) = argmax
(xT ,yT )

λmax(B
′(x

T
, y

T
)) (B.24)

B.2.2 Signal known with unknown transmission time

The log-likelihood function is given by

l(ζ) = − 1

N0

∫ T

0

M−1
∑

i=0

(

ri(t)− Aih
T (t− τi)φ

)2
dt (B.20)

Partial differentiation w.r.t Ak gives,

∂l(θ)

∂Ak

= − 1

N0

∫ T

0

2
(

rk(t)− Akh
T (t− τk)φ

) (

−hT (t− τk)φ
)

dt = 0

for each of k = 0, 1, · · · ,M − 1. Equating this to zero to find the maximum value
gives,

φT

(∫ T

0

rk(t)h(t− τk) dt

)

− Akφ
T

(∫ T

0

h(t− τk)h
T (t− τk) dt

)

φ = 0

If we replace the integral with yk =
∫ T

0
rk(t)h(t− τk) dt and use the properties of

the vector h(t) as shown in Appendix B.3, we have

φTyk − (T/2)Akφ
Tφ = 0

69

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



So, the MLE of Ak is

Âk =
φTyk

(T/2)φTφ
, k = 0, 1, · · · ,M − 1

Putting this back in equation (B.20), we have

l(ζ) = − 1

N0

M−1
∑

i=0

∫ T

0

r2i (t) dt− 2

(

φTyi

(T/2)φTφ

)(∫ T

0

ri(t)h
T (t− τi) dt

)

φ+

(

φ
T
yi

(T/2)φ
T
φ

)2

φT
(

∫ T

0
h(t− τi)h

T (t− τi) dt
)

φ

= − 1

N0

M−1
∑

i=0

∫ T

0

r2i (t) dt+
1

N0

M−1
∑

i=0

(

φTyiy
T
i φ

(T/2)φTφ

)

Maximizing l(ζ) w.r.t τ is equivalent to maximizing the second term. So the MLE
for η is given by

η̂ = argmax
η

M−1
∑

i=0

φTyiy
T
i φ = argmax

η
φTBφ (B.25)

where B = YYT and Y = [y0 y1 · · · yM−1] with yi =
∫ T

0
ri(t)h(t − τi) dt, i =

0, 1, · · ·M − 1. B is a function of (x
T
, y

T
, t0).

B.3 Properties of h(t)
The time dependent vector h(t) that was used for modeling the problem in

equation (21) has some interesting properties which simplifies the derivation of the
CRLB and the MLE. These properties are derived here. We have

h(t− τi) =
[

1√
2
cos 2πF0(t− τi) · · · cos 2π(N − 1)F0(t− τi) sin 2πF0(t− τi)

· · · sin 2π(N − 1)F0(t− τi)]
T

Differentiating both sides w.r.t τi, we get

∂h(t − τi)

∂τi
= 2πF0

[

0 sin 2πF0(t − τi) 2 sin 2π2F0(t − τi) · · · (N − 1) sin 2π(N − 1)F0(t − τi)

− cos 2πF0(t − τi) −2 cos 2π2F0(t − τi) · · · −(N − 1) cos 2π(N − 1)F0(t − τi)
]T

Let

L =









0(N,N)

[

0(1,N−1)

diag(1, 2, · · · , N − 1)

]

−
[

0(N−1,1) diag(1, 2, · · · , N − 1)
]

0(N−1,N−1)









So, we have the partial derivative of h(t− τi) w.r.t to τi as

∂h(t− τi)

∂τi
= (2πF0)Lh(t− τi)
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Next we will compute the integral
∫ T

0
h(t)hT (t) dt. We have,

h(t)hT (t) =

























1√
2

cos 2πF0t
...

cos 2π(N − 1)F0t
sin 2πF0t

...
sin 2π(N − 1)F0t

















































1√
2

cos 2πF0t
...

cos 2π(N − 1)F0t
sin 2πF0t

...
sin 2π(N − 1)F0t

























T

Let us compute each of the integrals in this 2N − 1 × 2N − 1 product matrix
separately. Integral of the first element is

∫ T

0

1

2
dt = [t]T0 =

T

2

Integrals of the elements on the diagonal are given by

∫ T

0
cos2 2πkF0t dt =

1

2

∫ T

0

(1 + cos 4πkF0t) dt

=
1

2

[

t+
sin 4πkF0t

4πkF0

]T

0

=
T

2

and
∫ T

0
sin2 2πkF0t dt =

1

2

∫ T

0

(1− cos 4πkF0t) dt

=
1

2

[

t− sin 4πkF0t

4πkF0

]T

0

=
T

2
for k = 1, 2, · · ·N − 1. Integrals of the rest of the elements are given by

∫ T

0
cos 2πkF0t sin 2πnF0t dt =

1

2

∫ T

0

sin 2π(n+ k)F0t dt+ sin 2π(n− k)F0t dt

=
1

2

[

−cos 2π(n+ k)F0t

4π(n+ k)F0

− cos 2π(n− k)F0t

4π(n− k)F0

]T

0

= 0

and

∫ T

0
cos 2πkF0t cos 2πnF0t dt =

1

2

∫ T

0

cos 2π(n+ k)F0t dt+ cos 2π(n− k)F0t dt

=
1

2

[

sin 2π(n+ k)F0t

4π(n+ k)F0

+
sin 2π(n− k)F0t

4π(n− k)F0

]T

0

= 0
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and

∫ T

0
sin 2πkF0t sin 2πnF0t dt =

1

2

∫ T

0

cos 2π(k − n)F0t dt− cos 2π(n+ k)F0t dt

=
1

2

[

sin 2π(k − n)F0t

4π(k − n)F0

+
sin 2π(n+ k)F0t

4π(n+ k)F0

]T

0

= 0

for k, n = 1, 2, · · · , N − 1. Therefore, we have the integral of h(t)hT (t) as a scaled
identity matrix given by

∫ T

0

h(t)hT (t) dt =
T

2











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











= (T/2)I(2N−1)

Since h(t) is periodic with period T , for any τ ,

∫ T

0

h(t− τ)hT (t− τ) dt =

∫ T

0

h(t)hT (t) dt = (T/2)I(2N−1) (B.26)

Now, we compute the integral of the cross-product of the partial derivatives of
h(t− τi) w.r.t to τi

∫ T

0

∂h(t− τi)

∂τi

∂hT (t− τi)

∂τi
=
∫ T

0
(2πF0Lh(t− τi)) (2πF0Lh(t− τi))

T dt

= (2πF0)
2L
[

∫ T

0
h(t− τi)h

T (t− τi) dt
]

LT

= (T/2)(2πF0)
2LLT

(B.27)
and the integral of the cross-product of h(t − τi) with its partial derivative w.r.t
to τi is

∫ T

0

∂h(t− τi)

∂τi
hT (t− τi) =

∫ T

0
2πF0Lh(t− τi)h

T (t− τi) dt

= (2πF0)L
[

∫ T

0
h(t− τi)h

T (t− τi) dt
]

= (T/2)(2πF0)L

(B.28)

B.4 Transformation of the Parameters

In Section 3.3 we discussed the relationship between the unknown attenuation
factors and the unknown signal, and between the unknown TOAs and the unknown
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signal. Here we will show that the FIM given in equation (24) is rank two deficient.
Then we will show that the transformation given in equation (25) satisfies the
conditions given in [40]. From (24), we have

Iθ =
(T/2)

(N0/2)

[

(2πF0)
2φT

LL
Tφ(diag(A))2 (2πF0)(φ

T
Lφ)(diag(A)) (2πF0)(A ⊙ A)φT

L

(2πF0)(φ
T
L
Tφ)(diag(A)) (φTφ)IM AφT

(2πF0)L
Tφ(A ⊙ A)T φA

T (AT
A)I(2N−1)

]

If ν1 = [ 1T
M AT −(φ+(2πF0)L

Tφ) ]T and ν2 = [ 1T
M −AT (φ−(2πF0)L

Tφ) ]T

then it can be verified that Iθν1 = 0 and Iθν2 = 0. Therefore ν1 and ν2 are in the
null space of Iθ. Also, Iθ + (1/2)ν1ν

T
1 + (1/2)ν2ν

T
2 is non-singular. This means

that ν1 and ν2 are the basis vectors for the null space of Iθ and so the matrix Iθ

is rank two deficient. The Jacobian of the transformation is given by,

H =

(

∂θ′

∂θ

)

=























∂τ ′

∂τ

∂τ ′

∂A

∂τ ′

∂φ

∂A′

∂τ

∂A′

∂A

∂A′

∂φ

∂φ′

∂τ

∂φ′

∂A

∂φ′

∂φ























(B.29)

Now, we will compute each of the derivatives in the Jacobian matrix. The elements
of the first sub-column are given by,

∂τ ′

∂τ
=

∂

∂τ
([−1M−1 IM−1]τ )

= [−1M−1 IM−1]
∂τ ′

∂A
= 0(M−1,M)

∂τ ′

∂φ
= 0(M−1,2N−1)

The elements of the second sub-column are given by,

∂A′

∂τ
= 0(M−1,M)

∂A′

∂A
=

∂

∂A

(

(

[0(M−1,1) IM−1]A
) (

eT1A
)−1
)

= (1/A0)[−A′ IM−1]
∂A′

∂φ
= 0(M−1,2N−1)
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where e1 is the first column of an M ×M identity matrix. The elements of the
third sub-column are given by,

∂φ′

∂τ
=

∂

∂τ
A0





1 0(1,2N−2)

0(2N−2,1)

[

IN−1 IN−1
IN−1 −IN−1

]



 diag(h(−τ0))φ

=



 A0





1 0(1,2N−2)

0(2N−2,1)

[

IN−1 IN−1
IN−1 −IN−1

]



 diag

(

∂h(−τ0)

∂τ0

)

φ 0(2N−1,1) · · · 0(2N−1,1)





=



 A0





1 0(1,2N−2)

0(2N−2,1)

[

IN−1 IN−1
IN−1 −IN−1

]



 (2πF0)Ldiag(h(−τ0))φ 0(2N−1,1) · · · 0(2N−1,1)





∂φ′

∂A
=

∂

∂A





(

e
T
1 A

)





1 0(1,2N−2)

0(2N−2,1)

[

IN−1 IN−1
IN−1 −IN−1

]



 diag(h(−τ0))φ





=









1 0(1,2N−2)

0(2N−2,1)

[

IN−1 IN−1
IN−1 −IN−1

]



 diag(h(−τ0))φ 0(2N−1,1) · · · 0(2N−1,1)





∂φ′

∂φ
=

∂

∂φ





(

e
T
1 A

)





1 0(1,2N−2)

0(2N−2,1)

[

IN−1 IN−1
IN−1 −IN−1

]



 diag(h(−τ0))φ





=



 A0





1 0(1,2N−2)

0(2N−2,1)

[

IN−1 IN−1
IN−1 −IN−1

]



 diag(h(−τ0)) 0(2N−1,1) · · · 0(2N−1,1)





For the transformed parameters to have finite variance, the row vectors of H must
be equal to the linear combinations of those eigenvectors of Iθ that have nonzero
eigenvalues [40]. In order to show that the row vectors ofH are linear combinations
of those eigenvectors of Iθ that have nonzero eigenvalues, it is enough to show that
the row vectors of H are orthogonal to the null space of Iθ. That is, it is enough
to show that Hν1 = 0 and Hν2 = 0. Now,

Hν1 =



















∂τ ′

∂τ 1M + ∂τ ′

∂A
A− ∂τ ′

∂φ
(φ+ (2πF0)L

Tφ)

∂A′

∂τ 1M + ∂A′

∂A
A− ∂A′

∂φ
(φ+ (2πF0)L

Tφ)

∂φ
′

∂τ 1M +
∂φ

′

∂A
A− ∂φ

′

∂φ
(φ+ (2πF0)L

Tφ)



















.

Substituting the partial derivatives that we computed previously and further sim-
plifying gives,

Hν1 =

















[−1M−1 I(M−1)]1M + 0(M−1,1) − 0(M−1,1)

0(M−1,1) + (1/A0)[−A′ I(M−1)]A− 0(M−1,1)

A0P(2πF0)Ldiag(h(−τ0))φ+ A0Pdiag(h(−τ0))φ−
(A0Pdiag(h(−τ0))φ+ A0Pdiag(h(−τ0))(2πF0)L

Tφ)

















where

P =





1 0(1,2N−2)

0(2N−2,1)

[

I(N−1) I(N−1)

I(N−1) −I(N−1)

]



 .

Using the fact that Ldiag(h(−τ0)) = diag(h(−τ0))LT , we haveHν1 = 0. Similarly
it can be shown that Hν2 = 0.
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C Optimal Sensor Configuration

Here we will analyze the effect of the sensor-emitter geometry on the FIM for
the emitter location. We will derive the D-optimal configurations for the uncon-
strained and the constrained cases that are described in Section 4.1. From (30)
and (B.18) we have the FIM for the emitter location vector η′ = [x

T
y
T
] as

Iη′ =

(

∂τ ′

∂η′ T

)T

(2πF0)
2φ′ TLLTφ′(diag(A′))2

(

∂τ ′

∂η′ T

)

(C.1)

If we assume that the signal level is the same at all sensors, i.e, Ai = A for all i,
then we have diag(A′) = AI(M−1), where I(M−1) is the (M − 1)× (M − 1) identity
matrix, and we have the above FIM as

Iη′ = (2πF0)
2φ′ TLLTφ′A2

(

∂τ ′

∂η′ T

)T (
∂τ ′

∂η′ T

)

(C.2)

If we let ψi be the angle of sensor i from the positive x-axis measured at the emitter
as shown in Figure (D.1), then we can write (B.19) as

(

∂τ ′

∂η′ T

)

= (1/c)











(cosψ1 − cosψ0) (sinψ1 − sinψ0)
(cosψ2 − cosψ0) (sinψ2 − sinψ0)

...
...

(cosψM−1 − cosψ0) (sinψM−1 − sinψ0)











(C.3)

Now let

ψ
i

Figure C.1. Definition of the angle ψi.

J =





cosψ0 cosψ1 · · · cosψM−1

sinψ0 sinψ1 · · · sinψM−1

1 1 · · · 1




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Using elementary operations, we can transform J to




cosψ0 cosψ1 − cosψ0 · · · cosψM−1 − cosψ0

sinψ0 sinψ1 − sinψ0 · · · sinψM−1 − sinψ0

1 0 · · · 0



 =





u c

(

∂τ ′

∂η′ T

)T

1 0T





where u = [cosψ0 sinψ0 1]T and 0 is the (M − 1) × 1 zero vector. Now, since
the elementary operations do not change the determinant, we have

det(JJT ) = det











u c

(

∂τ ′

∂η′ T

)T

1 0T









uT 1

c

(

∂τ ′

∂η′ T

)

0











= det











uuT + c2
(

∂τ ′

∂η′ T

)T (
∂τ ′

∂η′ T

)

u

uT 1











= det

(

uuT + c2
(

∂τ ′

∂η′ T

)T (
∂τ ′

∂η′ T

)

− uuT

)

So, det

[

(

∂τ ′

∂η′ T

)T (
∂τ ′

∂η′ T

)

]

= (1/c2)3 det(JJT ) so that we have,

det(Iη′) =
(2πF0)

2φ′ TLLTφ′

c6
det(JJT )

Maximizing the determinant of the FIM is equivalent to maximizing det(JJT ).

C.1 Unconstrained Geometry

This problem can be stated as follows:
We have g : ℜM → ℜ such that

g(ψ) = det(JJT )

where ψ = [ψ0 ψ1 · · · ψM−1]
T , Ψ = [−π, π]M is a convex subset of ℜM . Find

argmax
ψ∈Ψ

g(ψ)

We have,

JJT =













∑M−1
i=0 cos2 ψi

∑M−1
i=0 cosψi sinψi

∑M−1
i=0 cosψi

∑M−1
i=0 cosψi sinψi

∑M−1
i=0 sin2 ψi

∑M−1
i=0 sinψi

∑M−1
i=0 cosψi

∑M−1
i=0 sinψi M












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By Hadamard’s inequality,

g(ψ) = det(JJT ) ≤
(

M−1
∑

i=0

cos2 ψi

)(

M−1
∑

i=0

sin2 ψi

)

(M)

The equality holds if and only if JJT is diagonal. That is iff
∑M−1

i=0 cosψi sinψi = 0

∑M−1
i=0 cosψi = 0

∑M−1
i=0 sinψi = 0

(C.4)

Also,
(

∑M−1
i=0 cos2 ψi

)(

∑M−1
i=0 sin2 ψi

)

=
(

∑M−1
i=0 (12 + 1

2 cos 2ψi)
)(

∑M−1
i=0 (12 − 1

2 cos 2ψi)
)

=
(

M
2 + 1

2

∑M−1
i=0 cos 2ψi

)(

M
2 − 1

2

∑M−1
i=0 cos 2ψi

)

= M2

4 − 1
4

(

∑M−1
i=0 cos 2ψi

)2
≤ M2

4

This inequality holds iff
M−1
∑

i=0

cos 2ψi = 0 (C.5)

When the sensors are placed around the emitter at equi-angular distances (as
shown in Figure 17(a)), then we have ψi = 2π

(

i
M

)

, i = 0, · · · ,M − 1. This
configuration satisfies the conditions in (C.4) and (C.5). Therefore, this is an
optimal configuration. Also, when M is a multiple of three, if the sensors are
distributed equally at the three vertices of an equilateral triangle inscribed in the
circle around the emitter, as shown in Figure 17(b), then this configuration also
satisfy these conditions and hence, is also an optimal configuration.

C.2 Constrained Geometry

This problem can be stated as follows:
We have g : ℜM → ℜ such that

g(ψ) = det(JJT )

where ψ = [ψ0 ψ1 · · · ψM−1]
T , Ψ = [−θ, θ]M is a convex subset of ℜM . Find

argmax
ψ∈Ψ

g(ψ)

Notice that here the domain is constrained. For this constrained geometry problem
we will derive the D-optimal configurations for three and four sensors.
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Three sensor case

Here we use a simple transformation of variables. Let cosψi = xi, i = 0, 1, 2,
so that sinψi =

√

1− x2i . With this transformation of variables, the problem can
be restated as:
Suppose that x = [x0 x1 x2] and X = [−ζ, ζ]× [x0, ζ]× [x1, ζ] ⊂ ℜ3. Let

J =





x0 x1 x2
f(x0) f(x1) f(x2)
1 1 1





where f(x) =
√
1− x2 and let g : ℜ3 → ℜ such that g(x) = det(JJT ) = (det(J))2.

Find
argmax

x∈X
g(x)

The setup is as shown in Figure C.2.

ζ−ζ x
2

x
1

x
0

Figure C.2. Three sensor setup.

Now, for arbitrary x1 ≥ −ζ, we have x0 ∈ [−ζ, x1]. We will show that for all
arbitrary fixed x1, x2 ∈ X, g(x0) is a convex function of x0 for x0 ∈ [−ζ, x1]. We
have

∂g(x0)

∂x0
=

∂

∂x0
(det(J))2 = 2det(J)

∂

∂x0
det(J)

Now,

det(J) = x0(f(x1)− f(x2))− f(x0)(x1 − x2) + (x1f(x2)− x2f(x1))

⇒
∂

∂x0
det(J) = (f(x1)− f(x2))− f ′(x0)(x1 − x2)

⇒
∂g(x0)

∂x0
= 2det(J)((f(x1)− f(x2))− f ′(x0)(x1 − x2))
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⇒
∂2g(x0)

∂x20
= 2

(

∂ det(J)

∂x0

)2

+ 2det(J)
∂2 det(J)

∂x20

Now
∂ det(J)

∂x0
= (f(x1)− f(x2))− f ′(x0)(x1 − x2)

⇒
∂2 det(J)

∂x20
= −f ′′(x0)(x1 − x2) < 0

since f is concave and x1 < x2. Next we will show that det(J) < 0

det(J) = x0(f(x1)− f(x2))− f(x0)(x1 − x2) + (x1f(x2)− x2f(x1))
= f(x0)(x2 − x1) + f(x2)(x1 − x0)− f(x1)(x2 − x0)

Choose α, β ∈ (0, 1) such that α + β = 1 and αx0 + βx2 = x1. So, we get
α = (x2 − x1)/(x2 − x0) and β = (x1 − x0)/(x2 − x0). Now, since f is concave,

f(x1) = f(αx0 + βx2) > αf(x0) + βf(x2) =
(x2 − x1)f(x0)

(x2 − x0)
+

(x1 − x0)f(x2)

(x2 − x0)

⇒
(x2 − x0)f(x1) > f(x0)(x2 − x1) + f(x2)(x1 − x0)

Therefore, det(J) < 0 and so
∂2g(x0)

∂x20
> 0. This means that g(x0) is a convex

function of x0 ∈ [−ζ, x1]. The maximum of g(x0) occurs at x0 = −ζ or x0 = x1.
When x0 = x1, g(x) = 0. So the x0 that maximizes g(x) is x0 = −ζ. Similarly, we
can show that the x2 that maximizes g(x) is x2 = ζ. Now fix x0 = −ζ and x2 = ζ.
So x1 ∈ [−ζ, ζ].

∂g(x)

∂x1
= 2det(J)

∂

∂x1
det(J)

Now,

det(J) = x0(f(x1)− f(x2))− f(x0)(x1 − x2) + (x1f(x2)− x2f(x1))

⇒
∂

∂x1
det(J) = (f(x2)− f(x0)) + f ′(x1)(x0 − x2)

⇒
∂g(x)

∂x1
= 2det(J)((f(x2)− f(x0)) + f ′(x1)(x0 − x2))

Equating this to zero to determine the extrema

2 det(J)((f(x2)− f(x0)) + f ′(x1)(x0 − x2)) = 0

⇒
det(J) = 0 or (f(x2)− f(x0)) + f ′(x1)(x0 − x2) = 0
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If det(J) = 0 then g(x) = 0, so this is not a maximum. When (f(x2) − f(x0)) +
f ′(x1)(x0 − x2) = 0, we have

f ′(x1) =
(f(x2)− f(x0))

(x2 − x0)

⇒
−x1

√

1− x21
=
f(ζ)− f(−ζ)

ζ + ζ
= 0

Therefore x1 = 0. The solution for the problem is

argmax
x∈X

g(x) = {[−ζ 0 ζ]T}

Four sensor case

Here we assume the domain Ψ = [0, π]× [ψ0, π]× [ψ1, π]× [ψ2, π] ⊂ ℜ4. Notice
that here we are assuming that the constrained arc is a semicircle. The more
general case where θ ≤ ψ0 ≤ ψ1 ≤ ψ2 ≤ π − θ where 0 < θ < π/2 appears to
be more difficult. Using the argument from above, we can show that for optimal
configuration ψ0 = 0 and ψ3 = π. This is shown in the Figure C.3. So, we have

ψ
0

ψ
1

ψ
2

ψ
3

Figure C.3. Four sensor setup.

J =





1 cosψ1 cosψ2 −1
0 sinψ1 sinψ2 0
1 1 1 1





We want to prove that (1/4) det(JJT ) ≤ 2. Note that from Cauchy-Binet theorem

det(JJT ) = det 2









1 cosψ1 cosψ2

0 sinψ1 sinψ2

1 1 1







+ det2









1 cosψ1 −1
0 sinψ1 0
1 1 1







+

det2









1 cosψ2 −1
0 sinψ2 0
1 1 1







+ det2









cosψ1 cosψ2 −1
sinψ1 sinψ2 0
1 1 1









80

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



= (sinψ1 + sinψ2 cosψ1 − sinψ1 cosψ2 − sinψ2)
2 + (2 sinψ1)

2 + (2 sinψ2)
2+

(sinψ2 cosψ1 − sinψ1 + sinψ2 − sinψ1 cosψ2)
2

= 4 sin2 ψ1 + 4 sin2 ψ2 + 2(sinψ1 − sinψ2)
2 + 2(sinψ2 cosψ1 − sinψ1 cosψ2)

2

Hence we need to prove that

sin2 ψ1+sin2 ψ2+(1/2)(sinψ1−sinψ2)
2+(1/2)(sinψ2 cosψ1−sinψ1 cosψ2)

2 ≤ 2 (C.6)

(C.6) is equivalent to the following inequality, which can be easily verified

(1/2)(sinψ2 cosψ2+sinψ1 cosψ1)
2+(1/2)(sin2 ψ1+sin2 ψ2−2)2 ≥ (1/2)(sinψ1−sinψ2)

2

(C.7)

Now, if we show that

(sin2 ψ1 + sin2 ψ2 − 2)2 ≥ (sinψ1 − sinψ2)
2 (C.8)

then (C.7) is proved since (sinψ2 cosψ2 + sinψ1 cosψ1)
2 ≥ 0. Without loss of

generality ( due to symmetry of (C.8) ), we assume that sinψ2 ≥ sinψ1. Hence
(C.8) is equivalent to

2− sin2 ψ1 − sin2 ψ2 ≥ sinψ2 − sinψ1 (C.9)

which is equivalent to

5/2− (sinψ1 − 1/2)2 − (sinψ2 + 1/2)2 ≥ 0 (C.10)

Since (sinψ1 − 1/2)2 ≤ 1/4 and (sinψ2 + 1/2)2 ≤ 9/4, inequality (C.10) is easily
verified and this proves inequality (C.6). Equality in (C.10) holds when sinψ1 = 0
or 1, sinψ2 = 1 under which condition the equality in (C.7) holds. This means that
sinψ1 = 0, sinψ2 = 1 and sinψ1 = 1, sinψ2 = 1 are optimal solutions. Note that
since we have assumed sinψ2 ≥ sinψ1, we would also have sinψ1 = 1, sinψ2 = 0
as the optimal solution. Therefore the optimal sensor configurations are given by

argmax
ψ∈Ψ

g(ψ) =
{

[0 0 π/2 π]T , [0 π/2 π/2 π]T , [0 π/2 π π]T
}
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D Derivation of the Fisher information matrix

Assume a stationary emitter and stationary receivers. Also to simplify the
derivation, assume a known signal and known transmission time. We wish to de-
termine the CRLB for the emitter position.

At receiver i, (i = 1, · · · ,M) we receive

ri(t) = Ai(xT
, y

T
)s(t− τi(xT

, y
T
)) + wi(t)

where s(t) is known, Ai(xT
, y

T
) and τi(xT

, y
T
) are known functions of (x

T
, y

T
) and

wi(t) is white Gaussian noise with the same power spectral density

PW (F ) = N0/2 −∞ < F <∞

at each receiver. The noises are independent from receiver to receiver. We observe
r(t) = [r1(t) · · · rM(t)], 0 ≤ t ≤ T . Then the probability density function is

p(r(t); x
T
, y

T
) = c0 exp

(

(−1/N0)Q
)

where c0 is a constant and

Q =
M
∑

i=1

∫ T

0

(

ri(t)− Ais(t− τi)
)2
dt

and where Ai and τi both depend on the emitter position. The log-likelihood
function is

L(x
T
, y

T
) = (−1/N0)Q(xT

, y
T
)

To find the CRLB, the FIM matrix is

I(x
T
, y

T
) = (1/N0)E













∂2Q

∂x2
T

∂2Q

∂x
T
∂y

T

∂2Q

∂x
T
∂y

T

∂2Q

∂y2
T













Now,

∂Q

∂x
T

= −2
M
∑

i=1

∫ T

0

(ri(t)− Ais(t− τi))

[

−Ai
∂s(t− τi)

∂x
T

− ∂Ai

∂x
T

s(t− τi)

]

dt

⇒

∂2Q

∂x2
T

= −2
M
∑

i=1

∫ T

0

(ri(t)−Ais(t−τi))
∂

∂x
T

[

−Ai
∂s(t− τi)

∂x
T

− ∂Ai

∂x
T

s(t− τi)

]

dt+
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−2
M
∑

i=1

∫ T

0

[

−Ai
∂s(t− τi)

∂x
T

− ∂Ai

∂x
T

s(t− τi)

] [

−Ai
∂s(t− τi)

∂x
T

− ∂Ai

∂x
T

s(t− τi)

]

dt

After taking the expected value, the first integral is zero. Thus,

−E
(

∂2Q

∂x2
T

)

= 2
M
∑

i=1

∫ T

0

[

Ai
∂s(t− τi)

∂x
T

+
∂Ai

∂x
T

s(t− τi)

]

.

[

Ai
∂s(t− τi)

∂x
T

+
∂Ai

∂x
T

s(t− τi)

]

dt

The other terms are found similarly so that

I(x
T
, y

T
) = (2/N0)

M
∑

i=1





∫ T

0
g
(i)
11 (xT

, y
T
) dt

∫ T

0
g
(i)
12 (xT

, y
T
) dt

∫ T

0
g
(i)
21 (xT

, y
T
) dt

∫ T

0
g
(i)
22 (xT

, y
T
) dt





where for example

g
(i)
21 (xT

, y
T
) =

[

Ai
∂s(t− τi)

∂y
T

+
∂Ai

∂y
T

s(t− τi)

] [

Ai
∂s(t− τi)

∂x
T

+
∂Ai

∂x
T

s(t− τi)

]

Converting to the frequency domain by using

∫ T

0

g(t)h(t) dt =

∫ ∞

−∞
G∗(F )H(F ) dF

We have upon letting x
T
= η1 and y

T
= η2 so that

∫ T

0
g
(i)
mn dt =

∫∞
−∞

(

AiF
{

∂s(t−τi)
∂ηm

}

+ ∂Ai

∂ηm
F {s(t− τi)}

)∗

(

AiF
{

∂s(t−τi)
∂ηn

}

+ ∂Ai

∂ηn
F {s(t− τi)}

)

dF

But F{s(t−τi)} = S(F ) exp(−j2πFτi) and F
{

∂s(t−τi)
∂ηm

}

= S(F ) ∂
∂ηm

exp(−j2πFτi)

∫ T

0
g
(i)
mn dt =

∫∞
−∞

[

AiS
∗(F ) ∂

∂ηm
exp(j2πFτi) +

∂Ai

∂ηm
S∗(F ) exp(j2πFτi)

]

.
[

AiS(F )
∂

∂ηn
exp(−j2πFτi) + ∂Ai

∂ηn
S(F ) exp(−j2πFτi)

]

dF

=
∫∞
−∞ |S(F )|2

(

Ai
∂τi
∂ηm

(j2πF ) exp(j2πFτi) +
∂Ai

∂ηm
exp(j2πFτi)

)

.
(

Ai
∂τi
∂ηn

(−j2πF ) exp(−j2πFτi) + ∂Ai

∂ηn
exp(−j2πFτi)

)

dF

=
∫∞
−∞ |S(F )|2

(

Ai(j2πF )
∂τi
∂ηm

+ ∂Ai

∂ηm

)(

Ai(−j2πF ) ∂τi
∂ηn

+ ∂Ai

∂ηn

)

dF

=
∫∞
−∞ |S(F )|2A2

i (2πF )
2 ∂τi
∂ηm

∂τi
∂ηn

dF +
∫∞
−∞ |S(F )|2 ∂Ai

∂ηm

∂Ai

∂ηn
dF
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The cross terms are zero since
∫ ∞

−∞
F |S(F )|2 dF = 0

So,
∫ T

0

g(i)mn dt =

∫ ∞

−∞
(2πF )2|S(F )|2 dFA2

i

∂τi
∂ηm

∂τi
∂ηn

+ E ∂Ai

∂ηm

∂Ai

∂ηn

where

E =

∫ ∞

−∞
|S(F )|2 dF

is the energy of the signal.

∫ T

0

g(i)mn dt = EF̄ 2A2
i

∂τi
∂ηm

∂τi
∂ηn

+ E ∂Ai

∂ηm

∂Ai

∂ηn

where

F̄ 2 =

∫∞
−∞(2πF )2|S(F )|2 dF
∫∞
−∞ |S(F )|2 dF

is the mean-square bandwidth. But

τi = (1/c)
√

(x
T
− xi)2 + (y

T
− yi)2

⇒
∂τi
∂x

T

= (1/c)
(x

T
− xi)

√

(x
T
− xi)2 + (y

T
− yi)2

= (1/c) cosψi

and
∂τi
∂y

T

= (1/c) sinψi where ψi is the angle of sensor i from the positive x-axis

measured at the emitter as shown in Figure D.1. Hence

(x
T
,y

T
)

(x
i
,y

i
)

ψ
i

Figure D.1. Definition of the angle ψi.

[I(x
T
, y

T
)]mn = 1

(N0/2)

∑M
i=1

{

EF̄ 2A2
i (1/c

2)

[

cos2 ψi sinψi cosψi

sinψi cosψi sin2 ψi

]

mn

+

E ∂Ai

∂ηm

∂Ai

∂ηn

}
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or finally we have

I(x
T
, y

T
) = E

(N0/2)
F̄ 2

c2

∑M
i=1A

2
i (xT

, y
T
)

[

cos2 ψi sinψi cosψi

sinψi cosψi sin2 ψi

]

+

E
(N0/2)

∑M
i=1





(

∂Ai

∂x
T

)2 (

∂Ai

∂x
T

)(

∂Ai

∂y
T

)

(

∂Ai

∂y
T

)(

∂Ai

∂x
T

) (

∂Ai

∂y
T

)2





(D.1)

D.1 With no Obstacles

Assume direct path to all sensors and no multipath. So, the Ai’s, the attenu-
ation factors can be modeled as inversely proportional to the distance. i.e,

Ai(xT
, y

T
) =

Gi
√

(x
T
− xi)2 + (y

T
− yi)2

=
Gi

Ri

where Gi is a constant.

⇒ ∂Ai(xT
, y

T
)

∂x
T

=
−Gi

R2
i

∂Ri(xT
, y

T
)

∂x
T

=
−Gi

R2
i

(x
T
− xi)

√

(x
T
− xi)2 + (y

T
− yi)2

=
−Gi

R2
i

cosψi

and similarly,
∂Ai(xT

, y
T
)

∂y
T

=
−Gi

R2
i

sinψi

Putting these in (D.1), we have

I(x
T
, y

T
) = E

(N0/2)

∑M
i=1

{

F̄ 2

c2
.
G2

i

R2
i

[

cos2 ψi sinψi cosψi

sinψi cosψi sin2 ψi

]

+

G2
i

R4
i

[

cos2 ψi sinψi cosψi

sinψi cosψi sin2 ψi

]}

= E
(N0/2)

∑M
i=1

(

F̄ 2

c2
.
G2

i

R2
i
+

G2
i

R4
i

)

[

cos2 ψi sinψi cosψi

sinψi cosψi sin2 ψi

]

D.2 With an Obstacle

Suppose that there is an obstacle B at (x
B
, y

B
). This induces an azimuth

modulation say f
B
(x

T
, y

T
). So the attenuation factors can be written as,

Ai(xT
, y

T
) =

(

Gi

Ri

)

f
B
(x

T
, y

T
)

⇒
∂Ai

∂x
T

=

(

−Gi

R2
i

)

f
B
(x

T
, y

T
)
∂Ri(xT

, y
T
)

∂x
T

+

(

Gi

Ri

)

∂f
B
(x

T
, y

T
)

∂x
T

=

(

−Gi

R2
i

)

f
B
(x

T
, y

T
) cosψi +

(

Gi

Ri

)

∂f
B
(x

T
, y

T
)

∂x
T
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And similarly,

∂Ai

∂y
T

=

(

−Gi

R2
i

)

f
B
(x

T
, y

T
) sinψi +

(

Gi

Ri

)

∂f
B
(x

T
, y

T
)

∂y
T

Now,
(

∂Ai

∂x
T

)2

=

(

−Gi

R2
i

)2 [

f
B
(x

T
, y

T
) cosψi −Ri

∂f
B
(x

T
, y

T
)

∂x
T

]2

=

(

G2
i

R4
i

)

f 2
B
(x

T
, y

T
)

[

cosψi −Ri
∂ ln f

B
(x

T
, y

T
)

∂x
T

]2

=

(

G2
i

R4
i

)

f 2
B
(x

T
, y

T
)

[

cos2 ψi +R2
i

(

∂ ln f
B
(x

T
, y

T
)

∂x
T

)2

−2Ri cosψi

(

∂ ln f
B
(x

T
, y

T
)

∂x
T

)]

Similarly, we have

(

∂Ai

∂y
T

)2

=
(

G2
i

R4
i

)

f 2
B
(x

T
, y

T
)

[

sin2 ψi +R2
i

(

∂ ln f
B
(x

T
, y

T
)

∂y
T

)2

−2Ri sinψi

(

∂ ln f
B
(x

T
, y

T
)

∂y
T

)]

and
(

∂Ai

∂xT

)(

∂Ai

∂yT

)

=

(

G2
i

R4
i

)

f2
B
(xT , yT ) {cosψi sinψi+

R2
i

(

∂ ln fB (xT , yT )

∂xT

)(

∂ ln fB (xT , yT )

∂yT

)

− Ri cosψi

(

∂ ln fB (xT , yT )

∂yT

)

−Ri sinψi

(

∂ ln fB (xT , yT )

∂xT

)}

So, we have the FIM as

I(x
T
, y

T
) = E

(N0/2)

∑M
i=1

{

(

F̄ 2

c2
.
G2

i

R2
i
+

G2
i

R4
i

)

f 2
B
(x

T
, y

T
)

[

cos2 ψi sinψi cosψi

sinψi cosψi sin2 ψi

]

+

(

G2
i

R4
i

)

f 2
B
(x

T
, y

T
)Ji

}

(D.2)
where the matrix Ji is given by

[Ji]11 =

[

R2
i

(

∂ ln f
B
(x

T
, y

T
)

∂x
T

)2

− 2Ri cosψi

(

∂ ln f
B
(x

T
, y

T
)

∂x
T

)

]
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[Ji]12 =

[

R2
i

(

∂ ln f
B
(x

T
, y

T
)

∂x
T

)(

∂ ln f
B
(x

T
, y

T
)

∂y
T

)

−Ri cosψi

(

∂ ln f
B
(x

T
, y

T
)

∂y
T

)

−Ri sinψi

(

∂ ln f
B
(x

T
, y

T
)

∂x
T

)]

= [Ji]21

[Ji]22 =

[

R2
i

(

∂ ln f
B
(x

T
, y

T
)

∂y
T

)2

− 2Ri sinψi

(

∂ ln f
B
(x

T
, y

T
)

∂y
T

)

]

(D.3)
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LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

AENR Average energy-to-noise ratio

ASNR Average signal-to-noise ratio

CAM Complex cross-ambiguity matrix

CRLB Cramer-Rao lower bound

FDOA Frequency difference of arrival

FIM Fisher information matrix

LPI Low probability of intercept

LS Least squares

LSE Least squared error

MLE Maximum likelihood estimator

NP Neyman-Pearson

PDF Probability density function

RMS Root mean square

SNR Signal-to-noise ratio

TDOA Time difference of arrival

TOA Time of arrival

UMP Uniformly most powerful

WLS Weighted least squares

WLSE Weighted least squares error

(vx, vy, vz) The velocity of the target in the x, y and z directions

(xi, yi) Location of sensor i

(xT , yT , zT ) The x, y and z coordinates of the target

N0

2
Noise spectral density

ψi Angle of sensor i from the positive x-axis measured at the emitter
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σ2
i Noise variance at sensor i

τi Unknown time of arrival of signal at sensor i

A M × 1 vector of the unknown attenuation factors

A′ M − 1× 1 vector of the unknown relative attenuation factors

B Complex cross-ambiguity matrix

IN An N ×N identity matrix

P N ×N permutation matrix

W N ×N DFT matrix

Ã Complex attenuation factor at sensor i

Ai Unknown attenuation factor at sensor i

ai, bi Fourier coefficients of the signal

c Propogation speed of signal

dmax Distance between the farthest pair of sensors

F0 Fundamental frequency of the Fourier series

Fs Sampling frequency

ki Discrete Doppler shift at sensor i

M Number of sensors

N Number of signal samples at each sensor.

ni Discrete time delay at sensor i

PD Probability of detection

PFA Probability of false alarm

Ri Distance from the emitter to the ith sensor

ri Signal received at sensor i

s Transmitted Signal

T Length of observation interval

t0 Unknown transmission time
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Ts Non-zero length of the signal

wi Additive Gaussian random process at sensor i

Esi Signal energy at sensor i

I Information matrix

Iθ Fisher information matrix of the unknown parameter vector θ

η 3× 1 vector of the unknown emitter location coordinates and the transmis-
sion time

φ 2N − 1× 1 vector of the unknown Fourier coefficients

τ M × 1 vector of the unknown TOAs

τ ′ M − 1× 1 vector of the unknown TDOAs

h(t) 2N − 1× 1 vector as defined in Appendix B.3
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